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1 Introduction 
 Discrete-time and continuous-time phase-
locked loop (DTPLL and CTPLL) implementations are 
fundamentally different. The behavioral differences 
between these different systems becomes almost 
indistinguishable however, as the over-sampling rate 
(OSR) in the digital signal processing (DSP) is 
increased. The ratio of sampling rate to the PLL 
closed-loop unity-gain frequency will be defined in this 
memorandum as [1] 
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in which Fs is the sampling rate in Hz, and ωn is the 
PLL’s natural frequency in radians/s. Although this 
definition was not formally presented in [1], it is a very 

convenient definition because closed-loop unity gain 
frequency is precisely given by the denominator in (1) 
for the type-2 CTPLL, and this relationship is 
independent of the damping factor ζ. 
 For a second-order, type-2 CTPLL, the 
damping factor and phase margin are closely related 
by the approximation1 
 
(2) _ deg0.01 PMζ φ≈  

 
It is of course no surprise that system stability margin 
and the time-domain behavior are interconnected, but 
this is a useful approximation for the discussions that 
are presented later. We would otherwise lack a simple 
means to relate a discrete-time system’s 
characteristics back to the CTPLL damping factor 
equivalent. 
 The main purposes of this memorandum are: 
 

• To provide a mathematical basis and means to 
convert the classical second-order type-2 
CTPLL into a discrete-time system 

• To investigate different metrics of equivalence 
between CTPLL and DTPLL designs 

• To provide the mathematical framework to 
assist in analyzing other arbitrary designs that 
may be of interest. 

 
The PLL satisfies a cornucopia of different 

engineering needs in today’s world, and as such it is 
necessary to at least attempt to capture some of these 
different perspectives in the discussions that follow. To 
that end, we will consider the extracted DTPLL designs 
from several different perspectives including: (i) time-
domain response, (ii) frequency-domain closed-loop 
gain, (iii) equivalent noise bandwidth.  

There are many graphical plots contained in this 
memorandum. This was purposely done in order to 
enhance readability but it does make this a very 
lengthy monologue. Conclusions are provided at the 
end of each major section where appropriate in boxed 
regions in order that key points are not overlooked or 
lost. 

1.1 Continuous-Time and Discrete-
Time System Important 
Relationships 

 Two equations from [1] (equations 1 and 8) 
form much of the foundational basis for the technical 
discussions that follow. The first of these two equations 
makes use of the Poisson Sum formula to permit the 

                                                      
1  [4], page 251, equation (8-58) 
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discrete-time and continuous-time transform 
descriptions of a system to be translated as 
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In (3), the left-hand side is mathematically the z-
transform (scaled by Ts) of the time-series given by hk= 
h(kTs) whereas H(f) is the continuous-time Fourier 
transform of h(t). The sampling rate is Fs with Fs= Ts

-1. 
The second equation of interest makes it possible to 
use the continuous-time Fourier transform of the open-
loop gain function to compute the closed-loop 
frequency-domain description of the sampled control 
system and is given by 
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These equations receive substantial consideration in 
[2] should the interested reader wish to follow the 
underlying details more rigorously. One of the most 
attractive features of (4) is that it permits the exact 
inclusion of sampling in an otherwise continuous-time 
system without the need of first computing the z-
transforms involved. Although we will not exploit this 
perspective in this memorandum, but it is nonetheless 
worthy of special note. 
 Since the CTPLL and DTPLL are not precisely 
the same particularly for small OSR values, the notion 
of an “equivalent” DSP redesign of a CTPLL must 
receive additional definition. The question, “Equivalent 
how?” must be asked. Different systems will naturally 
require a different definition of equivalence such as 
equivalence in: 
 

• Equivalent Noise Bandwidth 
• Bandwidth at -3 dB 
• Natural Frequency and Damping Factor 
• Stability Margin (Gain Peaking) 
• Impulse Response 

 
Ultimately, we must decide how the Laplace 

transform operator s and the z-transform operator z are 
to be related in our redesign methodology. Equivalently, 
we must decide how differentiation and integration in 
the time domain will be handled between the 
continuous-time and discrete-time systems. A glimpse 
of this issue is offered in Figure 1 where the forward 
and backward Euler integration methods are compared 
for the continuous time domain systems which has an 
impulse response given as 

 
Figure 1 Comparison Between Forward and 
Backward Euler Integration Methods 
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for t ≥ 0. The resulting responses are substantially 
different even for appreciable OSR values as 
evidenced here. More information is provided in the 
next section concerning such integration methods. 
 Finally, a word about system stability is in 
order. As is true with any numerical simulation work, 
stability is crucial for achieving any meaningful results. 
In the context of the material presented in this 
memorandum, two different forms of stability must be 
considered. First of all, the underlying numerical 
integration formulas that are adopted must be in a 
parameter range where they are themselves stable as 
discussed in Section 2. Secondly, the design of the 
DTPLL must itself be stable. The first stability type is 
easily achieved by using an adequate OSR parameter 
whereas the second depends upon proper pole-zero 
placement for the DTPLL design itself. Stability issues 
need to be considered in context since there are 
different types of stability that must be considered. 
 

• “Equivalence” between CTPLL and DTPLL is a 
subjective term that must be precisely 
quantified. 

• Overall stability requires both (i) stability of the 
underlying numerical integration model and (ii) 
the system barring any imperfections in the 
numerical integration 
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2 s- and z-Operators in Terms 
of Integration Formulas 

 It is very convenient to think about the Laplace 
transform s as a mathematical operator that is to be 
replaced by a discrete time operator in terms of z 
which is the unit-time element of z-transform theory. It 
is desirable that the adopted discrete time operator be 
both simple and accurate. The accuracy issue is 
particularly important if the OSR parameter is small.  
 In this section, we will introduce 4 different 
discrete-time methods for approximating the 
continuous-time Laplace transform operator s. These 
methods will subsequently be used to redesign the 
CTPLL into a discrete-time system implementation. A 
fifth technique is developed at the beginning of Section 
3 which is based upon an impulse-invariant 
perspective. 
 All of the integration formulas that we will 
consider in this memorandum are documented in 
numerical method textbooks. Two references that 
provide extensive treatment of this subject are [2] and 
[3]. 

2.1 Foward Euler Integration 
 The Forward Euler (FE) integration formula is 
the most simple algorithm that we can choose to 
employ. It is also the most inaccurate and potentially 
unstable algorithm that we will consider. This formula 
originates from approximating z as 
 
(6) 1sTz e sT= ≈ +  
 
from which we may write 
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In the discrete time domain, this is equivalent to 
defining the time derivative of a signal x(t) as 
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x x
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which leads to 
 

(9) 1n n nx x T x
•

+ = +  
 
In the context of the first-order initial value problem in 
which dx/dt= -λx(t), the discrete-time equation 
becomes 
 

(10) ( )1 1n nx T xλ+ = −  

 
and the eigenvalue region for which the formula 
remains stable is that for which 
 
(11) 1 1Tλ− <  

 
The corresponding stability region for this integration 
formula is shown in Figure 2. Compared to the 
methods that follow, this stability region is dramatically 
smaller than that exhibited by the other methods. This 
small stability region forces the implementation to 
utilize a high OSR value in order to achieve a 
reasonable match with the behavior of the CTPLL. 
Although the FE method is rather intuitive and 
consequently frequently adopted, its use should be 
strongly discouraged unless the designer is well aware 
of its short-comings. 
 
Figure 2 Stability Region For The Forward Euler 
Method Is The Interior of Circle (u= OT) 
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2.2 Backward Euler Integration 
 The Backward Euler (BE) integration formula is 
also a first-order method similar to the FE formula, but 
it is an implicit integration formula rather than an 
explicit one like the FE method. As is true of most 
implicit integration formulas, they offer superior stability 
as compared with explicit formulas of similar 
complexity. This formula originates from approximating 
z-1 as 
 
(12) 1 1sTz e sT− −= ≈ −  
 
from which we may write 
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(13) 
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In the discrete time domain, this is equivalent to 
defining the time derivative of a signal x as 
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which leads to 
 

(15) 11 nn nx x T x
•

++ = +  
 
In the context of the first-order initial value problem in 
which dx/dt= -λx(t), the discrete-time equation 
becomes 
 

(16) ( ) 1
1 1n nx T xλ −

+ = +  

 
and the eigenvalue region for which the formula 
remains stable is that for which 
 

(17) 
11 1Tλ −+ >  

 
The corresponding stability region for this integration 
formula is shown in Figure 3. 
 
Figure 3 Stability Region For The Backward Euler 
Method Is The Exterior Of The Circle (u= OT) 
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The stability region for the BE method is dramatically 
larger than the FE method. As far as first-order 
methods are concerned, the BE method is highly 

recommended. 

2.3 Trapezoidal Integration 
 Trapezoidal integration is another implicit 
integration formula which is actually the well-known 
bilinear transform method in disguise. It is based upon 
approximating z-1 as 
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from which we may write 
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In the discrete time domain, this is equivalent to writing 
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In the context of the first-order initial value problem in 
which dx/dt= -λx(t), the discrete-time equation 
becomes 
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and the eigenvalue region for which the formula 
remains stable is that for which 
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The trapezoidal method simply requires that Re(λ) > 0 
for stability. This is a pleasing result since it insures 
that the output is bounded so long as the input is 
bounded. 
 
The stability region for the BT method is the entire left-
hand plane. As long as the input signal is bounded, so 
is the output. 
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2.4 Second-Order Gear Integration 
 The last implicit integration formula that we will 
consider here is the 2nd-order Gear algorithm. This 
formula class is particularly well suited for stiff 
differential equations (i.e., equations having widely 
separated eigenvalues). The associated discrete time 
difference equation associated with this method is 
given by 

(23) 11 1

4 1 2
3 3 3

nn n nx x x T x
•

++ −= − +  

 
Rearranging terms, this becomes 
 

(24) 1 1 1

3 4 1
2 3 3

n n n nx x x x
T

•

+ + −
 = − +  

 

 
From this result, we may conclude that the Laplace 
transform operator s (viewed as a differentiation 
operator) for the 2nd-order Gear Method is given by 
 

(25) 1 23 4 1
1

2 3 3
s z z

T
− − = − +  

 

 
In the context of the first-order initial value problem in 
which dx/dt= -λx(t), the region of absolute stability for 
this method is described by the exterior region of the 
curve given by2 
 

(26) 23 1
( ) 2

2 2
j je eθ θσ θ − −= − + −  

 
This stability region is plotted in Figure 4. 

 

2.5 Summary 
A number of the more important points from this 

section are summarized below. 
 

• Implicit integration methods (e.g., Backward Euler, 
Trapezoidal, and Gear) are much preferred over 
explicit methods. 

• Although simple to implement, the Forward Euler 
method should be avoided. 

• The Trapezoidal integration formula is stable for all 
inputs that are bounded. It is equivalent to the well-
known bilinear transform method. 

 
 With these basic concepts now in hand, we 
can consider the CTPLL redesign question in the realm 

                                                      
2  From [3], equ. (13-70) 

of the integration formulas just discussed. 
 
Figure 4 Stability Region For The 2nd-Order Gear 
Method Is The Exterior Of The Plotted Region (u= 
OT) 
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3 CTPLL Redesign 
 If our intent is to convert a CTPLL into a 
DTPLL, we must have a technique or formula that 
permits us to move between the two respective 
domains accordingly. Quite frequently, this is done in a 
fairly ad-hoc manner. Adding additional rigor and 
insight into this specific issue is one of the main 
purposes of this paper. The integration formulas of the 
previous section provide the needed recipes for 
moving between the continuous-time and discrete-time 
domains. 

3.1 Basic Type-2 CTPLL 
Our focus in this memorandum is limited to the 

basic type-2 CTPLL because it is a heavily utilized 
architecture with which most engineers have some 
familiarity. The open-loop gain function for the basic 
continuous-time 2nd-order type-23 PLL is given by 
 

(27) 
2

2
( ) 1n

ol
n

G s s
s

ω ζ
ω

  = +     
 

 
where ωn is the natural frequency in radians/second 
and ζ is the damping factor.  
 There are two closed-loop transfer functions 
that are primarily of interest regarding the CTPLL. The 
                                                      
3  loop “type” refers to the number of ideal poles in the 
transfer function 
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first involves the transfer function between the output 
phase and the input phase. It has an expected lowpass 
filter characteristic that is given by 
 

(28) ( ) ( )
( )
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1 2 2
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1 2

n
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ol n n

s
G s

H s
G s s s
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The second transfer function is more relevant to 
continuous-time systems in which the PLL’s voltage-
control oscillator (VCO) has imperfect phase noise 
performance. This transfer function pertains to the 
relationship between the output phase from the 
(closed-loop) PLL and any phase perturbation 
introduced by the VCO acting stand-alone. We will not 
be concerned with this transfer function in our redesign 
efforts, but this transfer function is included here for 
completeness. It is given by 
 

(29) ( ) ( )
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2 2 2
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s
H s

G s s sζω ω
= =
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This transfer function is obviously highpass in nature. 
 An example plot of H1( ) is provided in Figure 5 
for the case where ωn / (2π) = 10 kHz and ζ= 0.75. A 
number of helpful equations that express important 
quantities like 3 dB bandwidth, maximum gain-peaking, 
etc. can be found in [1], and these are provided in 
Section 12 for easy reference. As mentioned in the 
introduction segment, matching open-loop gain 
characteristics between the continuous-time and 
discrete-time systems is but one possible metric of 
equivalence that may be pursued in the redesign effort. 

4 CTPLL Redesign Using 
Impulse Response 
Invariance 

 The first redesign method that we will consider 
does not rely upon an explicit mapping of the Laplace 
transform s to the z-domain, and we consider this 
method here. This method is used extensively in 
Chapter 5 of [2] in order to include sampling effects in 
continuous-time but sampled PLLs. We will necessarily 
have to modify the details somewhat in order to fit 
within the present range of our discussions. 
 In order to perform the redesign task, we 
normally must be able to separate out the presence of 
the loop filter function and the frequency-controlled 
oscillator. We are therefore forced to focus on the 
open-loop gain function (27) rather than the closed-
loop H1 function (28). If we start with (27) and take the 

inverse Laplace transform, we obtain the time-domain 
function given by 
(30) 2( ) 2 ( )n nh t t u tω ζω= +  
 
in which u(t) represents the unit-step function. If we 
then take the z-transform of (30) directly, we obtain 
 
Figure 5 Closed-Loop Gain Characteristic for 
CTPLL with 10 kHz Natural Frequency and 0.75 
Damping Factor 
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In moving from the continuous-time Laplace domain to 
the discrete-time z-domain, from (3) we must include 
another factor of T since the input continuous-time 
function θ(t) and its sampled form θ*(t) are 
approximately related by a scaling factor of T as 
Laplace{ θ*(t) } ≅ T-1 θ(s). Once this factor has been 
taken into account, the discrete-time redesign of the 
CTPLL appears as shown in Figure 6. In this figure, the 
parameters are defined as follows: 
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Figure 6 CTPLL Redesign Using Impulse Response 
Invariance 
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Normally, any digital implementation of the DTPLL 
would involve additional registers and delays 
compared to what is shown in Figure 6 in order to 
make it more realizable, but a brief look at the 
additional delay case is delayed until Section 4.4.  
 If we follow through with H(z) as defined by 
(31) and form the closed-loop transfer function that is 
equivalent to (28), we obtain 

(34) 
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This result can be used to easily compare the 
frequency-domain behavior of the continuous-time 
system versus the so-called redesigned discrete-time 
system. 
 The transient response of the DTPLL is 
described by the second-order difference equation 
given by 
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in which vk represents any applied tunable oscillator 
control voltage (like that corresponding to a step-
frequency change), and θink represents any phase 
sequence that may be applied at the PLL input. The 
relationship between v and the applied frequency 
change is given by v= 2πFstepT. This formula is 
evaluated for several example cases in Section 4.2. 

4.1 Closed-Loop Stability 
 The closed-loop stability of the DTPLL 
described by (35) can be determined by computing the 
poles of the characteristic equation which corresponds 
to the denominator polynomial in (34). Stability can 
also be examined by computing the gain and phase 
behavior of the open-loop gain function H(z) given by 
(31). A little bit of algebra reveals that the poles for the 
DTPLL’s characteristic equation are given by 
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in which 

(37) 
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DTPLL stability is of course crucial for any system that 
is designed. The root-locus techniques which would 
make use of these results are basic control theory 
concepts that are addressed in most textbooks. 
 There are two basic ways in which this type of 
DTPLL can be unstable. In the first way, the DTPLL is 
simply designed with a damping factor ζ which is too 
small. A stable DTPLL case is shown in Figure 7 
whereas a DTPLL suffering from insufficient damping 
factor is shown in Figure 8. The second way in which 
the DTPLL can become unstable is to employ an 
insufficient sampling rate compared to the DTPLL 
bandwidth being used. This situation is shown in 
Figure 9. In one case, phase margin is completely 
insufficient whereas in the other, the gain margin is 
completely insufficient. 
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Figure 7 Open-Loop Plots for DTPLL Under Stable 
Conditions (Gain Margin= 16.16 dB) 
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Figure 8 DTPLL Almost Unstable Case with ]= 0.01. 
Gain Margin= 62.4 dB Whereas Phase Margin= 
1.145q 
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Figure 9 DTPLL Almost Unstable Case with ]= 
0.707. Gain Margin= 1.916 dB and Phase Margin= 
26.04q 
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 When it comes to stability, both gain margin 
and phase margin must be considered in the general 
case. As shown in Section 4.4, the inclusion of even 
two additional unit-delay elements dramatically affects 
the step-frequency response and the underlying 
stability margins. Without specific attention to the 
“additional-delay” issue, this can frequently be a source 
of significant departure between realized and desired 
performance. Suffice to say that stability is a very 
important question which must be addressed before 
attacking the finer points of DTPLL design offered in 
this paper. 
 
Always be sure to compute the gain and phase margin 
for any DTPLL, being careful to include all time delays 
that may be present in the system. 

4.2 Step-Frequency Response 
Behavior 

 The finite difference equation (35) can be used 
to compute the time-domain DTPLL output phase 
response to a step-frequency error. The ideal step-
frequency response for the CTPLL is given by 
 

(38) ( ) ( )2

2

2
sin 1

1
nstep t

o step n

n

F
t F e tζωπ

θ ω ζ
ω ζ

−= −
−

 

 
We will next compare the ideal CTPLL time-domain 
response with that of the DTPLL for several different 
OSR values. In all cases, the CTPLL parameters are 
as follows: 
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(39) 
1

2
0.707

n kHz
ω
π

ζ

=

=
 

 
 The frequency step size employed is 1 kHz. 
Output phase versus time for the DTPLL and CTPLL 
are shown in Figure 10 through Figure 13. Obviously, 
the DTPLL and CTPLL become identical as the OSR is 
increased. An OSR value between 7 and 14 captures 
most of the CTPLL characteristic nicely. 
 
All CTPLL and DTPLL cases considered in this 
paper assume the basic loop parameters given by 
(39) and the transient analysis always involves a 
step-frequency change of 1 kHz. 
 
Figure 10 DTPLL Transient Response for Sampling 
Rate= 3 kHz (OSR= 2.12) 
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Figure 11 DTPLL Transient Response for Sampling 
Rate= 5 kHz (OSR= 3.54) 
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Figure 12 DTPLL Transient Response for Sampling 
Rate= 10 kHz (OSR= 7.07) 
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Figure 13 DTPLL Transient Response for Sampling 
Rate= 20 kHz (OSR= 14.14) 
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In the context of step-frequency response for a 
damping factor of 0.707, an OSR value between 7 and 
14 behaves very closely to the continuous-time 
system. 

4.3 Closed-Loop Gain 
Characteristic 
The frequency domain is often a more 

convenient domain in which to evaluate and assess 
loop stability issues. Poor loop stability always shows 
up as excessive “gain peaking” in the closed-loop 
transfer functions. 

Equation (31) is the open-loop gain for the 
impulse-invariant case when no additional unit-delays 
are included to facilitate easier implementation. It is a 
simple matter of course to include an additional factor 
of z-m in (31) when m additional unit-delay elements 
are present to ease implementation issues. It is a 
simple matter to construct the resulting H1 open-loop 
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gain function as 

(40) ( ) ( )
( )1 1

m

m

H z z
H z

H z z

−

−=
+

 

 
The closed-loop gain function is examined 

versus the OSR parameter in Figure 14 through Figure 
18 for the m=0 case, and in Section 4.4 for the 
additional delay case of m=2. 
 
Figure 14 Closed-Loop Gain for DTPLL for m=0 
with Fs= 3 kHz (OSR= 2.121) 
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Figure 15 Closed-Loop Gain for DTPLL for m=0 
with Fs= 5 kHz (OSR= 3.536) 
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Figure 16 Closed-Loop Gain for DTPLL for m=0 
with Fs= 10 kHz (OSR= 7.071) 
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Figure 17 Closed-Loop Gain for DTPLL for m=0 
with Fs= 20 kHz (OSR= 14.142) 
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Only a small amount of additional gain-peaking 

is shown in the previous figures. In general, this DTPLL 
configuration is very well behaved in the frequency 
domain down to fairly small OSR values as we would 
expect based upon the step-frequency error responses 
that we have already seen.  
The amount of gain peaking versus key loop 
parameters is shown for this DTPLL in Figure 19. Once 
additional unit-delays are introduced into the DTPLL 
implementation however, the stability picture is 
dramatically altered as discussed later in Section 4.4. 
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Figure 18 Closed-Loop Gain for DTPLL for m=0 
with Fs= 50 kHz (OSR= 35.355) 
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Figure 19 Closed-Loop Maximum Gain Peaking 
Versus Sampling Rate and Damping Factor (No 
Extra Delays; m=0) 
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4.4 Implementation With Additional 
Delay Elements 

 It is a simple matter to insert additional unit-
delays in the discrete time equation (31) in order to 
make the digital design easier to implement as shown 
in Figure 20. In terms of the open-loop gain function 
that we had earlier in (31), it must only be augmented 

with an additional factor of z--2 since the location of 
these delays in Figure 20 does not matter as far as it is 
concerned. 
 
Figure 20 DTPLL With Additional Delay Elements 
Included For Easier Implementation 
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 For small OSR values, the presence of the two 
additional delay elements results in substantial 
additional phase shift within the control system which 
impacts stability. The frequency domain analysis is 
based upon (40) whereas the finite difference equation 
for this system is given by 
 

(41) ( )
1 1

1 2 32 1
k k k k k

k k k

out ac in bc in v v

out ac out bc out

θ θ θ
θ θ θ

− −

− − −

= + + − +
− + −

 

 
Example step-frequency transient responses along 
with the frequency-domain closed-loop gain behavior 
are shown for a number of different sampling rates in 
the figures that immediately follow. 
 
Figure 21 DTPLL Transient Response with Fs= 15 
kHz (OSR= 10.607, m=2) 
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Figure 22 Closed-Loop Gain Corresponding to 
Figure 21 
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Figure 23 DTPLL Transient Response with Fs= 20 
kHz (OSR= 14.142, m=2) 
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Figure 24 Closed-Loop Gain Corresponding to 
Figure 23 
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Figure 25 DTPLL Transient Response with Fs= 30 
kHz (OSR= 21.213, m=2) 
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Figure 26 Closed-Loop Gain Corresponding to 
Figure 25 
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Figure 27 DTPLL Transient Response with Fs= 50 
kHz (OSR= 35.355, m=2) 

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

Discrete Time w/ o Extra Delays
Discrete Time with Delays
Ideal

Impulse Invariant Method

Time, ms

Fr
eq

ue
nc

y 
E

rr
or

  

Figure 28 Closed-Loop Gain Corresponding to 
Figure 27 
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Figure 29 DTPLL Transient Response with Fs= 100 
kHz (OSR= 70.711, m=2) 
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Figure 30 Closed-Loop Gain Corresponding to 
Figure 29 
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Figure 31 Closed-Loop Maximum Gain Peaking 
Versus Sampling Rate and Damping Factor (With 
Extra Delays; m=2) 

10 100 1 .10
30

5

10

15

20

Damping= 0.40
Damping= 0.60
Damping= 0.80
Damping= 1.00
Damping= 1.20
Damping= 1.40

Gain Peaking Versus Sampling Rate (m=2)

Sampling Rate, kHz

M
ax

im
u

m
 G

ai
n 

P
ea

k,
 d

B

  Based upon the prior figures, we fully expect 
that the amount of gain peaking is much more severe 
for the m=2 case than for the ideal m=0 case in (40), 
and this is indeed the case. The gain-peaking plot for 
the m=2 case that corresponds to Figure 19 for the 
m=0 case is provided in Figure 31. As shown there, 

substantially higher OSR values are required in order 
to have the same degree of gain peaking present for 
any specific choice of ωn and ζ. 
 
Substantially higher OSR values are required for the 
m=2 case in order to have the same degree of gain 
peaking as for the m=0 case. 

4.5 Equivalent Noise Bandwidth 
Calculation of the equivalent noise bandwidth is 

of course only sensible for strictly stable systems. 
Given the closed-loop gain function H1(z), the 
equivalent noise bandwidth can be computed as 

 

(42) ( )
2 2

2
1

2

s

s

s

F

j f T

F

BW H e dfπ

−

= ∫  

assuming that the gain |H1(1)| = 1. Gain-peaking can 
significantly increase the equivalent noise bandwidth of 
the system and this is a major consideration in 
receiving or tracking type applications. Gain-peaking 
can be equally undesirable in transmitter-like 
applications as well. The equivalent noise bandwidth 
for the m=0 and m=2 DTPLL cases are shown in 
Figure 32 and Figure 33 respectively. The latter case 
clearly displays a substantially more problematic 
equivalent noise bandwidth behavior owing to the 
greater instability for the m=2 systems. 
 
Figure 32 Equivalent Noise Bandwidth Versus 
Sampling Rate and Damping Factor for Impulse-
Invariant DTPLL (m=0) 
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Figure 33 Equivalent Noise Bandwidth Versus 
Sampling Rate and Damping Factor for Impulse-
Invariant DTPLL (m=2) 
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4.6 Summary for Impulse Invariant 
Method 
The following key points are worth repeating: 
 

• Be certain to include all unit time delays in your 
analysis. 

• Make every attempt to keep the number of 
additional unit time delays as small as possible, 
recognizing that the needed OSR parameter 
becomes excessive as m>0. 

 

5 CTPLL Redesign Using FE 
Integration Method 

 If the OSR parameter is very high, any of the 
redesign methods discussed in this memorandum will 
work excellently, even the Forward Euler method that 
will be discussed here. If the OSR parameter is “small” 
however, great care should be exercised in using this 
integration method because of its poor stability 
characteristics. Even before stability factors set in, 
excessive gain peaking or poor transient response 
performance may force the adoption of a different 
integration method. 

5.1 Closed-Loop Gain Response for 
FE Method 
The first step in computing the closed-loop gain 

for the FE method is to form the open-loop gain 
function. The open-loop gain function for the FE 
method is given by 
 

(43) ( )
1 1

1 11 1OL

az b z
G z c

z z

− −
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+=
− −

 

 
where 
 

(44) 
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The closed-loop gain that is equivalent to H1 in 
equation (28) is given by 
 

(45) 
2 1

2 1 2 11
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and it is shown in block diagram form in Figure 34. 
 
Figure 34 CTPLL Redesign Using FE Integration 
Method 
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5.2 Finite Difference Equation for 
FE Method 
The finite difference equation that describes the 

transient response for the FE redesign of the CTPLL is 
given by 
 

(46) ( ) ( )
2 1 1 2

1 22 1
k k k k k

k k

out ac in bc in v v

bc out ac out

θ θ θ
θ θ
− − − −

− −
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in which θin is the input phase excitation (if present), 
θout is the output phase at the PLL output, and v 
represents an externally applied voltage that can be 
used to simulate a step-frequency change. The 
relationship between v and the applied frequency 
change is given by v= 2πFstepT.  

5.3 Step-Frequency Response for 
FE Method 
The finite difference equation (46) can be used 

to easily compute the DTPLL’s transient error response 
to an applied step-change in frequency. Several 
responses are shown here in the figures that follow for 
a range of OSR values. OSR values on the order of 30 
are required in order to have a good match between 
the DTPLL' 
 
Figure 35 DTPLL Transient Response with Fs= 5 
kHz (OSR= 3.54) 
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Figure 36 Closed-Loop Gain Corresponding to 
Figure 35 
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Figure 37 DTPLL Transient Response with Fs= 10 
kHz (OSR= 7.07) 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0.2

0

0.2

0.4

0.6

0.8

FE DTPLL Response
Ideal CTPLL Response

FE DTPLL Redesign

Time, ms

O
ut

pu
t P

ha
se

, r
ad

.

  
 
Figure 38 Closed-Loop Gain Corresponding to 
Figure 37 
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Figure 39 DTPLL Transient Response with Fs= 20 
kHz (OSR= 14.14) 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0.2

0

0.2

0.4

0.6

FE DTPLL Response
Ideal CTPLL Response

FE DTPLL Redesign

Time, ms

O
ut

pu
t P

ha
se

, r
ad

.

 
 
Figure 40 Closed-Loop Gain Corresponding to 
Figure 39 
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Figure 41 DTPLL Transient Response with Fs= 50 
kHz (OSR= 35.36) 
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Figure 42 Closed-Loop Gain Corresponding to 
Figure 41 
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5.4 Closed-Loop Gain Peaking 
The amount of closed-loop gain peaking is an 

important measure of loop stability. If the peaking is 
excessive, more than likely the choice of loop 
parameters should be adjusted. The closed-loop gain 
peaking curves for the FE redesigned CTPLL are 
provided here in Figure 43. As supported by this figure, 
sampling rates on the order of 40 kHz are required to 
reduce the influence of sampling rate on gain peaking. 
For this present example, 40 kHz corresponds to an 
OSR value of approximately 28. 

 
Figure 43 Closed-Loop Gain Peaking for FE CTPLL 
Re-Design Versus Damping Factor and Sampling 
Rate (m=0) 
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5.5 FE Method With Additional Time 
Delay Elements 
We have already seen that the inclusion of two 

additional unit-delays within the impulse-invariant 
DPLL dramatically affected stability margins for the low 
sampling rate cases. The same will be true for the FE 
redesigned CTPLL considered here. A block diagram 
of the modified DPLL having m=2 additional delays is 
shown in Figure 44. 
 
Figure 44 FE Redesigned CTPLL with m=2 
Additional Unit-Delay Elements 
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The difference equation that describes the transient 
response for the m=2 case is given by 
 

(47) 1 2 3 4

2 3 1 2

2k k k k k

k k k k

out out out bc out ac out

bc in ac in v v

θ θ θ θ θ
θ θ

− − − −

− − − −

= − − − +
+ + −

 
Frequency-step transient responses and the 
corresponding closed-loop gain characteristics are 
shown for a number of different sampling rates in 
Figure 45 through Figure 52. The additional delay 
elements increase the minimum acceptable sampling 
rate to approximately 25 kHz as compared to about 5 
kHz when the delays are absent. 
 

Figure 45 DTPLL Transient Response with Fs= 25 
kHz (OSR= 17.68, m=2) 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0.5

0.25

0

0.25

0.5

0.75

1

FE DTPLLL Transient Response
Ideal

FE DTPLL Step Frequency Response (m=2)

Time, ms

O
ut

pu
t P

ha
se

, r
ad

.

 
Figure 46 Closed-Loop Gain Corresponding to 
Figure 45 
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Figure 47 DTPLL Transient Response with Fs= 35 
kHz (OSR= 24.75, m=2) 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0.5

0.25

0

0.25

0.5

0.75

1

FE DTPLLL Transient Response
Ideal

FE DTPLL Step Frequency Response (m=2)

Time, ms

O
ut

pu
t P

ha
se

, r
ad

.

 
 



AM1 LLC U11700  19 

2 April 2005 U11700 PLL DSP Redesign.doc Version 1.0 
 2005 J.A. Crawford 

Figure 48 Closed-Loop Gain Corresponding to 
Figure 47 
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Figure 49 DTPLL Transient Response with Fs= 50 
kHz (OSR= 35.36, m=2) 
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Figure 50 Closed-Loop Gain Corresponding to 
Figure 49 
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Figure 51 DTPLL Transient Response with Fs= 100 
kHz (OSR= 70.71, m=2) 
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Figure 52 Closed-Loop Gain Corresponding to 
Figure 51 
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5.6 Equivalent Noise Bandwidth 
The equivalent closed-loop noise bandwidth can 

be computed for the FE redesigned CTPLL as done 
earlier in Section 4.5. The results for the FE 
redesigned case are provided in Figure 53. 
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Figure 53 Equivalent Noise Bandwidth Versus 
Sampling Rate and Damping Factor for FE 
Redesigned DTPLL (m=0) 
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Figure 54 Equivalent Noise Bandwidth Versus 
Sampling Rate and Damping Factor for FE 
Redesigned DTPLL (m=2) 
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5.7 Summary for FE Method 
A comparison of the FE results with the other 

methods clearly shows that the FE method is less 
stable as stated earlier. Although the FE method can 
be made to work equally well given a sufficiently high 
OSR value, other methods that are discussed in this 

memorandum are superior and should be adopted 
whenever possible. 

 

6 CTPLL Redesign Using BE 
Integration Method 
The Backward Euler (BE) method is the first 

implicit integration method that will be considered. 
Although its region of stability is still less than that 
delivered by the trapezoidal method (i.e., bilinear 
transform method), it can be adopted with confidence 
as circumstances warrant. 

6.1 Finite Difference Equation for 
BE Method 
The first step in computing the closed-loop gain 

for the BE method is to form the open-loop gain 
function. The open-loop gain function for the FE 
method is given by 
 

(48) ( )
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1
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The closed-loop gain that is equivalent to H1 in 
equation (28) is given by 
 

(50) ( ) ( )
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+=
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and it is shown in block diagram form in Figure 55. 
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Figure 55 CTPLL Redesign Using BE Integration 
Method 
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6.2 Step-Frequency Response for 
BE Method 
The finite difference equation that describes the 

DPLL’s transient response to input frequency and 
phase modulation is given by 
 

(51) ( ) ( )
1 1 1

1 2

1
2

k k k k
k

k k

ac in bc in v v
out bc

out ac out

θ θ
θ

θ θ
− − −

− −

+ + −  = +  + − −  
 
Several representative step-frequency transient 
responses are shown as a function of sampling rate in 
the figures that follow. 
 
Figure 56 DTPLL Transient Response with Fs= 5 
kHz (OSR= 3.536) 
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Figure 57 Closed-Loop Gain Corresponding to 
Figure 56 
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Figure 58 Transient Response with Fs= 10 kHz 
(OSR= 7.07) 
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Figure 59 Closed-Loop Gain Corresponding to 
Figure 58 
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Figure 60 Transient Response with Fs= 25 kHz 
(OSR= 17.68) 
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Figure 61 Closed-Loop Gain Corresponding to 
Figure 60 
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6.3 Closed-Loop Gain Peaking for 
BE Method 
The amount of closed-loop gain peaking is an 

important measure of loop stability. If the peaking is 
excessive, more than likely the choice of loop 
parameters should be adjusted. The closed-loop gain 
peaking curves for the BE redesigned CTPLL are 
provided here in Figure 62. As supported by this figure, 
sampling rates on the order of 40 kHz are required to 
reduce the influence of sampling rate on gain peaking. 
For this present example, 40 kHz corresponds to an 
OSR value of approximately 28. 

These gain-peaking curves are dramatically 
different than the curves provided in Figure 31 and 
Figure 43 for the impulse-invariant and FE methods. 
Low sampling rates in the FE methods lead to lower 
closed-loop bandwidths whereas they lead to instability 

with the impulse-invariant and FE methods. This 
improvement in stability is due to the implicit nature of 
the BE algorithm as compared to these other two 
methods. 
 
Figure 62 Closed-Loop Gain Peaking for BE CTPLL 
Re-Design Versus Damping Factor and Sampling 
Rate (m=0) 
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6.4 BE Method With Additional 
Time Delay Elements 
Two additional unit-delays have been inserted in 

Figure 63 in order to ease implementation. 
 
Figure 63 CTPLL Redesign Using BE Integration 
Method Including Additional Delays (m=2) 
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 The finite difference equation that describes 
the transient response for the BE case with m=2 is 
given by 
 

(52) ( )
2 3 1

1 2 32 1
k k k k k

k k k

out ac in bc out v v

out bc out ac out

θ θ θ
θ θ θ

− − −

− − −
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This result can be used to compute the resulting step-
frequency transient responses as shown in the 
following figures. 
 
Figure 64 Transient Response with Fs= 25 kHz 
(OSR= 17.68, m=2) 
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Figure 65 Closed-Loop Gain Corresponding to 
Figure 64 
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Figure 66 Transient Response with Fs= 50 kHz 
(OSR= 35.36, m=2) 
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Figure 67 Closed-Loop Gain Corresponding to 
Figure 66 
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Figure 68 Transient Response with Fs= 100 kHz 
(OSR= 70.71, m=2) 
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Figure 69 Closed-Loop Gain Corresponding to 
Figure 68 

1 10 100 1 .10
3

1 .10
4

1 .10
520

15

10

5

0

5

DTPLL  m=2
CTPLL 

Comparison of Closed-Loop Gains (BE)

Frequency, Hz

G
ai

n,
 d

B

Fs

2

 
 
 
Figure 70 Gain Peaking for BE Method With m=2 
Additional Delays Present 
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6.5 Equivalent Noise Bandwidth for 
BE Method 
The equivalent noise bandwidth for the BE 

DTPLL are shown for the m=0 and m=2 cases in 
Figure 71 and Figure 72 respectively. 
 
Figure 71 Equivalent Noise Bandwidth for BE 
Method (m=0) 
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Figure 72 Equivalent Noise Bandwidth for BE 
Method (m=2) 
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6.6 Summary for BE Method 
The BE method clearly exhibits substantially 

better stability than the FE method because it is based 
upon an implicit integration formula as discussed 
earlier. The block diagram for this method shown in 
Figure 55 is nevertheless fairly complex for a second-
order system. As shown in the next section, the bilinear 
transform method exhibits a more simplified block 
diagram (see Figure 73) even though it too is an 
implicit second-order system formulation. 

7 CTPLL Redesign Using 
Bilinear Transform Method 
The bilinear transform method (BT), also known 

as the trapezoidal method, is probably the most 
prevalent redesign method that is used. It has excellent 
stability characteristics as discussed earlier in Section 
2.3. In most cases, this method is the preferred 
method to use and for that reason, we will spend 
additional time on this important re-design approach. 

7.1 Finite Difference Equation for 
BT Method 
The open-loop gain characteristic for the BT 

method is given by 
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Sometimes, designers predestort the natural 

frequency ωn to compensate for the frequency warping 
characteristics of the bilinear transform. This can be 
done for any pole or zero location in the Laplace 
domain po and converting it to the appropriate pole or 
zero in the z-domain as 

 

(55) 
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However, no frequency predistortion is used in the 
discussions that follow. 
 The block diagram for the BT DTPLL is 
provided in Figure 73. 
 
Figure 73 Block Diagram for BT DTPLL Redesign 
Method 
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7.2 Stability of BT-Based DTPLL 
The stability of the BT method when used to 

simulate the Type-2 CTPLL is exceptional. That is not 
to say that the DPLL exactly mimics the CTPLL for low 
OSR values, but rather that it is extremely stable even 
for low OSR values. 

The phase margin can be found by first 
computing the frequency at which the open-loop gain is 
unity. After a fair amount of algebra, it can be shown 
that the unity-gain frequency is given by 

 

(56) 
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The phase margin can be computed using this result in 
equation (53) to compute the open-loop phase. The 
end result is that the phase margin is given very 
accurately (within about 0.2 degrees for 0 < ζ < 4) by 
the approximation 
 

(57) ( )
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2

4

tan
1

PM
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in which α1= 1.80746, α2= 2.8674, α3= 22.26795, α4= 
5.54267. The phase margin versus damping factor is 
shown here in Figure 74. The analysis reveals that the 
phase margin for this specific case is independent of 
the sampling rate and natural frequency selection for 
all practical choices (i.e., OSR > 2) which is obviously 
a very desirable result. 
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Figure 74 Phase Margin for BT DTPLL (m=0) 
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 The gain margin is undefined for the DTPLL 
case because the phase of the open loop gain does 
not become ±180 degrees except for frequencies 
greater than Fs/2. 

7.3 Step-Frequency Response for 
BT Method 
The difference equation that describes the 

transient response for the BT DTPLL is given by 
 

(58) 
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in which a, b and c are defined by (54). A number of 
example transient responses are shown in Figure 75 
through Figure 83. As suggested by earlier comments 
regarding the BT method, the transient responses are 
very well behaved even for fairly small values of the 
OSR parameter.  
 

Figure 75 Transient Response for BT DPLL with 
Fs= 8 kHz (OSR= 5.66) 
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Figure 76 Closed-Loop Gain Corresponding to 
Figure 75 
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Figure 77 78 Transient Response for BT DPLL with 
Fs= 15 kHz (OSR= 10.61) 
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Figure 79 Closed-Loop Gain Corresponding to 
Figure 77 

10 100 1 .103 1 .104 1 .105
40

30

20

10

0

10
Closed-Loop Gain (Bilinear Transform)

Frequency, Hz

G
ai

n,
 d

B

Fs

2

 
Figure 80 Transient Response for BT DPLL with 
Fs= 25 kHz (OSR= 17.68) 
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7.4 BT Method With Additional Time 
Delay Elements 
Two additional delay elements have been added 

to the DTPLL in Figure 84 in order to ease 
implementation. Gain-peaking and equivalent noise 
bandwidth for this case are addressed separately in 
Sections 7.5 and 7.6 respectively.  

The finite difference equation that describes the 
transient response of this modified DPLL is given by 

 

(59) 

( )

( ) ( )

1 2

2

1 1 3

2
2 1

k k k k

k k

k k k

o bc i c a b i ac i

v v

bc o c a b o ac o

θ θ θ θ

θ θ θ

− −

−

− − −

= + + + +
− +

− − + + −  
 
Several step-frequency transient responses are shown 
for the m=2 case in Figure 81 through Figure 91. 

 
Figure 81 Closed-Loop Gain Corresponding to 
Figure 80 
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Figure 82 Transient Response for BT DPLL with 
Fs= 50 kHz (OSR= 35.36) 
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Figure 83 Closed-Loop Gain Corresponding to 
Figure 82 
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Figure 84 BT Redesigned CTPLL With Additional 
Delays Included (m=2) 
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Figure 85 Transient Response for BT DPLL with 
Fs= 10 kHz (OSR= 7.07, m=2) 
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Figure 86 Closed-Loop Gain Corresponding to 
Figure 85 

10 100 1 .103 1 .104 1 .105
40

30

20

10

0

10
Closed-Loop Gain (BT m=2)

Frequency, Hz

G
ai

n,
 d

B

Fs

2

 
 

Figure 87 Transient Response for BT DPLL with 
Fs= 20 kHz (OSR= 14.14, m=2) 
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Figure 88 Closed-Loop Gain Corresponding to 
Figure 87 
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Figure 89 Transient Response for BT DPLL with 
Fs= 50 kHz (OSR= 35.36, m=2) 
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Figure 90 Closed-Loop Gain Corresponding to 
Figure 89 
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Figure 91 Transient Response for BT DPLL with 
Fs= 100 kHz (OSR= 70.71, m=2) 
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Figure 92 Closed-Loop Gain Corresponding to 
Figure 91 
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7.5 Closed-Loop Gain Peaking for 
BT Method 
As done for the previous cases, it is a straight 

forward to compute the maximum gain peaking that 
occurs versus damping factor and sampling rate. In all 
cases, a natural frequency of 1 kHz is again assumed. 
The results for the m=0 and m=2 cases are shown in 
Figure 93 and Figure 94 respectively. Both of these 
results are have very attractive performance 
characteristics. 

7.6 Equivalent Noise Bandwidth for 
BT Method 
The equivalent noise bandwidth behavior versus 

damping factor and sampling rate for the BT m=0 and 
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m=2 cases are shown in Figure 95 and Figure 96. 
Large equivalent noise bandwidths are indicative of 
excessive gain peaking of course. 
 
Figure 93 Gain Peaking for BT DTPLL With No 
Additional Internal Delays (m=0) 
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Figure 94 Gain Peaking for BT DTPLL With 
Additional Internal Delays (m=2) 
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Figure 95 Equivalent Noise Bandwidth for BT 
DTPLL With No Additional Internal Delays (m=0) 
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Figure 96 Equivalent Noise Bandwidth for BT 
DTPLL With Additional Internal Delays (m=2) 
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7.7 Summary for BT Method 
The BT method is to be preferred for redesigning 

CTPLL’s in most cases. It exhibits very desirable 
stability characteristics and is also straight forward to 
implement.  
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8 CTPLL Redesign Using 2nd-
Order Gear Method 
The 2nd Order Gear Method involves substantially 

more complexity in its implementation. Although this 
integration formula has desirable attributes in the 
context of stiff differential equations, the added 
complexity in the implementation would normally 
require that additional unit-delay elements be inserted 
thereby detracting from its suitability. The open-loop 
gain is given by the expression 

 
 

(60) ( )
1 2

2

2
1 2

3 4 1
1 1

2 3 3
3 3 4 1

1
2 3 3

n n
ol

z z
T T

G z
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− −

− −

 + − +    =     − +  

 

 
which obviously bears considerable complexity. 
Consequently, this method will not be pursued further 
at this time. 

9 Other PLL Redesign 
Literature 
A DSP-based PLL that utilizes an arctangent 

phase detector and direct digital synthesizer (DDS) 
quadrature oscillator are discussed in [5]. A block 
diagram of the PLL is provided here in  
 
Figure 97 DSP Based PLL with ATAN Phase 
Detector and DDS Quadrature Oscillator 

 
 
The z-transform for the DPLL is given by 
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The gain terms k1 and k2 can be expressed in terms of 
the CTPLL parameters ωn and ζ as 
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in which 
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s

ωφ π
ω
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The design parameters (k1 and k2) are derived from the 
analog PLL loop by using the bilinear z-transform and 
then comparing the denominator expressions 
(characteristic functions) of the two transfer functions. 
 Many other PLL re-design methodologies may 
be employed from ad-hoc methods to fairly 
sophisticated Kalman filter based methods. A 
reasonably broad overview of many of these different 
perspectives is provided in [1]. 

10 Conclusions and 
Recommendations 
As we have seen, stability in the PLL re-design 

sense comes in two distinctly different forms: (1) 
stability of the underlying numerical integration formula, 
and (2) stability of the DPLL design (assuming ideal 
numerical integration). Both perspectives must be 
considered. 

Different metrics can be adopted to guide the re-
design methodology that is followed. These included 
concepts such as impulse invariance, equivalent noise 
bandwidth, etc. 

It is very easy to have additional delays within the 
DPLL that are overlooked in the analysis. The impact is 
not severe if the over-sampling rate is extremely large, 
but stability and performance can suffer greatly if this is 
not the case. 

The trapezoidal integration formula which is 
equivalent to the bilinear transform is very attractive 
based upon both its simplicity and region of stability. In 
most cases, this method should be preferred over the 
other integration methods that were presented. 
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12 Summary of CTPLL Redesign Formula 
 
Name Block Diagram Coefficients Recommended 
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13 Appendix: Type-2 CTPLL Closed-Form Quantities 
 
 
Table 1 Helpful Formula for Classic Type-2 PLL [1] (]<1) 

Description Formula 
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Description Formula 
Transient Response 

( )tθ θ∆ →  
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