The Phase/Frequency Detector

An analysis of phase-locked loop design employing

phase frequency detectors.

By James Crawford

he controversial subject of *‘Divider Time Delay™ in recent

RF Design issues has prompted the following discussion
which was presented at a Hughes Aircraft Co. in-plant class on
phase-locked loop design. The following analysis is an endorse-
ment of Or. Egan’s explanation? where he states that the ap-
pearance of the delay-like term is due tc the sampling process
which is taking place in the phase-locked ioop, not the transport
delay or any other delay through the divider.

The delay-iike terms which was mentioned above is shown
in equations (3} and {4) of reference [3]. In this reference it is
suggested that “‘the discrepancy between theory and experimen
{in phase-locked loop design) was found to be aftributed ta
divider delay which caused a decrease in phase margin signifi-
cant enough in many cases to cause unstable loop perfor-
mance.”’ A decrease in loop phase margin does indeed occut
in these phase-locked loops but the sole mechanism is a result
of the sampling process which is taking place in the closed loop.

A rigorous analysis of phase-locked loop design employing
phase-frequency detectors necessitates a detailed examination
of the operation fundamentals. Rather than deal immediately
with the specifics of phase-iocked loop design using the
phaseffrequency detector, the problem will be dealt with using
the following approach:

1) A general discussion of sampling phase-locked loops will
be given which will display some of the differences between the
true open-loop gain function, and the commonly used continuous
approximation to the open-lcop gain function.

2) With the sarmpiing basics now developed, the transfer func-
tion for the phase/frequency detector will be found in some detail.

3) The phaseffraquency detector fransfer function is used 1o
write an accurate impuise for the open-loop gain function. Given
this function, a band-limited approximation of the open-loop gain
function will be found using Z-transforms. The final band-imited
expression can be used with conventional! continuous transtorm
{Laplace transforms) design methods for phase-locked loops.

Sampling Phase-Locked
Loop Fundamentals

in contrast to the continucus mixer-type phase dstector, the
phaselfrequency detector is a sampling phase detector. Phase
error information is available at discrete fime intervails which are
spaced at exact intervais of T seconds, where T is the period
of the raference frequency. The phase error at each instant is
in the form of an impulse function whose area is proportional
to the phase error. In reality, the impulses out ot a phase-
frequency detector such as the -Motorola 4344 are of finite
amplitude, but this fact is completely negligible in light of the
RC filter time constants which follow the device. The phase
detector ouiput pulses may be mathematically viewad as ideal
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impulse tunctions of appropriate area. For the time being, the
concept of the phase/ffrequency detector as an ideal impulse
sampler will be deferred and developed momentarily.

The phase-frequency detector is medeled in Figure 1 as an
ideal impulse sampler. The function H(s) represents some form
of analog ‘‘hold” function such as the RC lowpass fiiters that
customarily follow a phase-frequency detector. The function G(s)
represents the normal loop filter transfer function.
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Figure 1. The general Sampled phase-locked loop employs an ideal
impulse Sampler which must be followed by some form of “'hold”
device, (HS).

Before jumping into the loop details, as an agide, consider
the time function f(t) which is sampied by an ideal impulse
sampler. The sampled time function can be written as n (1)
where the asterisk (*) represents the time-sampled form of the
function.

(=]
*(1) = #) Zd(t - nT) {1
n=0
From Laplace platform and convolution theory, {1) may be
written in Laplace transforms as in (2) where F*(s) and {*(1) are
Laplace transform pairs. Note that F(s) and f(t) are also Laplace
transform pairs.

o
F*(s) = F(s) x L { Zd(t - nT)} (2)
n=o
The * in {2) represents convolution in the frequency domain.
Equation (1) may be used with the definition of the forward one-
sided Laplace transform to give yet another interpretation of the
fime-sampled function form in the frequency domain.

FYs) = [1(t) exp(~ sThat @)
o]
= [t} Zs(t-nT) exp(-sT)dt
Q n=o0

F*ts) = £ [d(t-nT) exp(- sT)dt (4)

=0 0
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€0
F*(s) = X f(nT) exp(-sT). {5)
n=0

Equation (5) is actually the defining relationship for the Z-
transform of f{t). This fact will be used later in this article for easy
caiculation of F*(s).

A very powerful relationship may be found by continuing the
convolution calculation in (2). Since the convolution must be per-
formed in the frequency domain, we must know the Laplace
transform of the infinite series of impulse functions which are
performing the sampling operation. Since

oty = 1 . 8)
then
L { Ed(t—nT)}=1+exp(-sT)+exp(—23T)+
) n=<:»1
1= exp(-sT) {7)

The convolution of (2) may be rewritten as

F*(s)=F(s)%

1 - exp(~sT)
#(u) du @
1- exp{sT-uT)
=I F(Z} dz

1- exp(sT)/Z TZ
where Z = exp{uT) and du = dZ{(ZT).

Taking this process one step further and using the Residue
theorem, this integral may be evaluated as in (9).
_ 1 f F(i2) dZ

T Z- exp(-sT)

9)

1 o
=__1.__. 2F(s+j n Ws)

n=-—co

where Ws = 2 n/T.

Equation (9) is a valuable result and aithough it involves an
infinite summation, it may be used to evaluate F*(s}.

These previous transform tools will appear much more
valuable if we now return to a discussion of Figure 1. As in
classical PLL analysis, the most expedient first step in the loop
analysis is to solve for the error function E*{s). We may write

E*(s) = (or - d0)*
= Q)I"r - d:'(:)'t
= or* - [ E*(s) H(s) G(s) ]*

(10)

Those unfamiliar with sampled systems will find [4] particutarly
useful and easy to understand. As developed in Chapter 4 of
|4], the sampling operation in (10) may be brought within the
brakcets because E(s) is already a sampled function. The sampl-
ed error function is then given by

E*(s) = ®r* — E*(s} HG"(s) (1)

We finally obtain the desired result for the sampled loop error
function.

[so]
_ Zor(sH n WspT (12)

E*
© 1+HG*(s)

= -0
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In most cases, ¢r(s} can he assumed to be effectively
bandlimited and aliasing of noise products can be neglected.
This gives some simplication to (12) as given in (13).

Pr(s)yT (13)
1T+ HG(s)

where ¢*(s) ~ or(s)/T.

E*(s) =

The asterisks would be absent in ciassical analysis of a phase-
locked loop which neglected sampling effects. With rare excep-
tion, most systems which use the phaselfrequency detector have
a small bandwidth compared to the referance frequency in order
to obtain reasonably low ‘‘sampling spurs.” For this reason, the
higher order terms (terms other than n=0) in equation (9) can
largely be ignored for low bandwidth situations. This is precise-
ly why classical analysis ignoring sampling effects still provides
excellent results in small bandwidth situations. As the loop band-
width is increased compared to the reference frequency,
however, the higher order terms cannot be ignored.

For large loop bandwidth situations (bandwidth > 0.1 F,.), Z-
transform technigues should be used to include the higher order
effacts. If there are true transport time delays within the loop,
modified Z-transforms should be used. If the loop bandwidths
ramain small (say < 0.1 F}, bandlimited forms of the open-
loop gain function may be found which very accurately describe
sampling effects without resorting to Z-transform analysis. Equa-
tion (8) which is repeated below as equation {14) will provide
the menu for arriving at a bandlimited form of the open-loop gain
function including sampling effects. The continuous Laplace
transform impulse response, Gol(s), must first be found. The con-
tinuous open-loop gain function will be re-expressed in terms
of Z-transforms and the assumption of small loop bandwicth im-
posed. The final resuit will be the bandiimited form of the open-
loop gain function with first order sampling effects.

1 o

F(Z) = —ZXF(s+jn Ws) (14)
T n=-c

It will be shown that the so called “divider time delay’' appears
during this step and is solely a result of sampling.

Impulse Response of
the Phase/Frequency Detector

A simplistic-equivalent circuit of the phasefirequency detec-
tor is provided in Figure 2. No attempt has been made here to
describe the frequency discriminator mode of operation, In many
applications, the phase detector remains in its linear range of
operation, because although the phase error may be very large
at the VCO, it is reduced by N at the phase detector.

R
Vout
T
= Zin of_lead-lag
filter
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In steady-state operation, the switches in Figure 2 are open
95 percent of each reference period, only closing long enough
to replenish the small discharge in capacitor C each reference
period. (Since the 4344 type phase detector cannot resolve ab-
solute time difterence between the divider and reference pulse
trains less than its own internal time delay, some built in offset
Is needed to avoid the detector’s *‘dead zone’ of operation at
Zero time difference between the two waveform trains.) During
the period of frequency acquisition, the proper polarity switch
is closed far a length of time which is defined by the time dif-
ference between the leading edge of the divide-by-N signal. This
signal relationship is shown in Figure 3. The phase detector out-
put pulse width is directly proportional to the phase etror within
the loop.
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The pulse widths out of the phase detector, p, are very small
with respect to the reference period because a Type It loop is
always used (zero steady-state phase error) and the VCO phase
error is reduced by the divider ratio, N.

We are primarily interested in the impulse response of the
phase detector/lowpass filter combination. The transfer function
for the lowpass filter alone is given by (16).

(16)
FL(s) = R1 1
Ri+R 1+sr1
where 71 = RIRC
R1 +R

A typical pulse response of the circuit in Figure 2 is presented
in Figure 4. The rising edge is very linear because p <<x1. The
output voltage, V,,;, can be easily found from Figure 4. The out-
put voltage during the next reference period is given by (17).

Vul) = V, exp(-t/e1) +
A1 V.. (1 tir1 1
RT TR st 1 — exp(-tir1))



for0 <t <=p
Vo) =Vou(p) exp(-t/r2) forp <t < T.

in a properly designed Type Il loop under normal linear opera-
tion, p << t1 and equation (17) may be written in a more simpie
form without the first exponentials.

(18)
R1

R1 + R
for0<i<=p
Voult) = Voulp) exp(-t2) for p < t < =T.

It is important to note once more that V, represents the in-
itial capacitor voltage due to any previous phase sample, de.

Vo) ~ vV, + Vultftl)

The Laplace transform transfer function can be found by using
the above equations directly.

R
Vouls) =LVt Vou 2

—th2
B TR 5 ) o2

(19)
Vo LRIV, 00T

s+ 11 (R1+R) t1 2 n (s+1/2)

where the phase error is de = 2r p/T.

As stated earlier, V, is a direct result of eartier samples of the
phase error, ¢e. Using this fact, it is possibie to show that the
output voltage as a function of the input phase error is given
by {20).

{20)
Vours) _ Kd T 1

de(s) (RIFRYRI+SAC 1-expl=sT) exp(—1/2)

where Kd =V, A2r}

This is the final result for the phase detector impulse response.
The factor T is a direct result of the sampling operation. Notice
that if T/x2 is not large, the second muitiplicative factor cannot
be ignored. In this case, the output voitage is a function of the
present phase detector error as well as the previous error
samples and Z-transform analysis is required. Since the intent
of this analysis has been to eventually arrive at a band-limited
form of the open-loop gain function, in that vein, T/+2 will be
assumed to be >> 1 such that Z-transform analysis will not be
required in the final end result.



Derivation of the Continuous
Band-Limited Open-Loop Gain
Function with Sampling

The phase-frequency detector is always used in a Type |l
phase-locked loop in order to realize reasonable spurious per-
formance and tuning range. in order to simplify the mathematics
involved, however, an example using a Type | system will be
used. Our approach will be to calculate Gol(Z) and compare it
to the continuous form of Gol(s). This will reveal the effects of
sampling upon the otherwise continucus open-loop gain
expression.

In erder to make any connection between an impulse sampl-
ed system and a continuous system, the sampled loop must have
some form of *'hold"’ device which effectively converts the phase
detector impulse functions into smooth time waveforms which
have a finite width in tirme, and a finite height. If the ‘*hold device”
is not present, the loop must be analyzed as a sampled system.
No equivalent continuous system would exist for that case.

The “hold” device may be as simple as an RC lowpass filter,
or as complicated as a true 0-order sample/hold. Consider a con-
tinuous Type | phase-locked loop with & low pass “hold"” as given
in (21).

21
KdKv _ Wn 1

Gol(s) = 5 s
T

where
Kd=phase detector gain

Kv=VCO sensitivity

N =feedback divider ratio

T =low pass filter time constant representing the *‘hold.”

As shown earlier, the sampling effects upon a continuous func-
tion may be included by taking the Z-transform of the time func-
tion provided that the continuous function is correct of course.
In the previous section, it was shown that the impulse response
of the phaseffrequency detector followed by a simple RC lowpass
filier is given by (20). Therefore, assuming that T >>> 12 in equa-
tion (20}, equation (21) must be multiplied by T {o have proper
form. Using a table of Z-transforms, equation {21) may be easi-
ly converted into Gol(Z).

(22)

WnT

s(1+s7)

= Wn (1- exp(-t/t}) T

__WnZT_ wnZzT

Z-1 Z-A
Coliecting terms in (22), the Z-transform for the Type | system
is simply given by (23).

(23)
WnZ(1-A) T
(Z-1)(Z-A)
Woe can effectively remove any significant effects of the **hoid"”
device upon the system by allowing r = 0, i.e., A — 0. This is

equivalent to making the RC filter time constant negligible com-
pared to the reference pericd, T. In the limit as A — ¢,

(24)

Gol(Z) =

Gol(@) = WnZT _  WnT
(Z-1)(Z-0) Z-1
Equation (24) may be expressed in terms of the more familiar
complex frequency, s, by noting that Z= exp(sT). Doing so, we
obtain (25). ’
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Mumber of harmonic tarms included in surnmation 3

Loep reference frequency 10000

Typ 1 loope Wn 2000

Loop LPF time constant, nsec 5000

APPROXIMATION TC' SAMPLED QPEN-LOOP GAIN FUNCTION

Eontinyovs Gol

Summatior of Go! Terms Exp( -5T72 )
F Gol ,dE Ang,Deg
188 ig.bs -P1.2¢8 18.86 -P1.98
15 6.53 -91.88 6.54 ~92.%7
28% 4,03 -32.48 4.84 -93.94
360 B.51 ~73.61 8.51 -75.94
488 -2.88 -P4.81 -1.98 -§7.92
H-1-1] ~3.94 -94.83 ~3.92 -$%.90
7ee -&.8% -98.47 -4 .85 ~183.84
H-LE =-1%.83 ~182.21 ~7.95 -105.88
1588 -13.6% ~188.72 =-13,47 ~11%.78
2884 -14.28 ~115.74 -15.98 ~129.48
068 20,87 ~132.17 -19.52 - 147,38
q@pe -22.5% ~192.18 -22.85 ~16%.14

Number of harmonic terrns included in summation 10

Loop reference fraquency 10000

Typs | loop Wn 2000

Loop LPF time constatn, nsec 5000

APPROXIMATION TO SAMPLED OREN-ALOOF GAIN FUNCTION

Continyoys Gol

Summation of o1 Terms Expl -5T/2)
F Gal (4B ang ,Reg
188 18,84 -91.45 18.88 -93.98
158 6.%4 ~%2.1% 6.54 =-$2.97
288 4.04 -92.93 4.84 ~93.94
e .51 ~94.3% 8.53 =-95.94
LLL ~1.98 -95.8¢ -1.98 -97.92
584 ~3.92 -97.23 -3.%2 ~99.98
700 -4.84 -106.34@ ~4.85 -183.86
1080 ~9.94 ~184.79 -9.95 =-189.8¢
1500 ~13.45 =112.4% ~13.47 ~119.78
2800 -15.92 ~128.54 -15.98 =12% .46
2eee -19.24 -438.14 -19.52 -149.3¢
LLLT =21.1% -156.88 ~22.8% -16%.16

Humbsr of harmonic @Tms ncluded n summhantion 5

Leop reference frequency 1000

Type Il loop Wn 2000

Loop damping factor, eta .707

APPROXIMATIQN TO SAMPLED OPEN-LOOP GAIN FUNCTION

Continuous Ge!

Summation of Gpl Terms Expt -8T/2 3
F Gol,aB Ang,Dey
180 20.95 -1%56.41 28,90 -158.,83
1%e 14.77 -147,99 14,67 -149,2%
20¢ 18,75 -139,48 18.4e ~142.34
380 5.88 -129.45 5.46 -132,82
Py 2.48 ~123,25 2.22 -127.25
see 6.1 -119,51 ~8.11 -124.14
789 -3.13 -115.77 -3.43 -121.69
1882 -4.45 -114,5¢ -4.72 ~122.4%
1588 -18. 16 -117,17 -ie.37 -128,23
2888 -12.7% -1%2.18 -12.92 -136.82
3eee ~14,58 -136.48 -16.49 ~153.68
4z0a -18,854 -1%5.5¢ -19.83 -172.38

Number of harmonic terms included in summation 10
Loop reference fraquency 1000
Type 1l Joop Wn 1000
Loop LPF time constant, nsec 5000
APPROXIMATION TO SAMPLED DPEN-LOOP GAIN FUNCTION
Continvous Gol

Summation o Gol Terms Expt ~87/2 )

F Ge! ,dB Ang.Deg
188 18.78 -13%.13 10.48 ~14@.34
158 S.ék -178,3% 5.44 -12%.85
208 2.38 -121.4% 2.22 -123.33
38 -1.73 -114.49 ~1,%3 -114,51
L1:1 4,448 =111.28 ~4,47 «113,864
588 -4.51 -1e%.71 -8.72 ~512.%%
780 -%.53 -189.20 -%.75 -112.99
1608 -12.68 -111,683 ~12.98 ~114.22
1588 -16.21 ~11b.42 =14, 44 -123.%%
2ege -18.67 -123.%9 ~1B.9¥8 -132.82
3Jeed -21.97 -12¢.95 =-22.%3 -151.53
587 -23.8% -158.98 ~25,84 -178.77

54

(25)
1 Wn exp(-sT/2)T
i2 Sin(wT/2)
For frequencies which are small compared to the reference fre-
quency, Fg = 1/T, the sin{x) ~ x approximation may be made,
reducing (25) to finally (26). This is equivalent to the initial
premise that the lcop bandwidth is much less than the reference
frequency.

Gol(s) =

{26)

Gal(s) = Wn exp{-sT/2)

5
The final result for the bandlimited form of the open-loop gain
function is given in (27). This expression includes the first order
sampling effects. The appearance of the so-called time delay
exponential accurred without introducing any transport time
delay whatsoever, only the sampling effects.
(27)

Gol(s) = exp(-sT/2) Wn

Generatizing, first order sampling effects for phase-locked
foops which have a small percentage bandwidth compared to
the reference frequency can be analyzed using classical Laplace
transform methods provided the new “delay term” is included
in the phase detector transfer function.

Kd exp(-sT/2) (28)
Further Proof

As further proof of our result above, we may compare this
result with that obtained using (8). Only the first few terms of
the infinite summation in (9) will be included. The computer pro-
gram and sample run appear in Appendix |. Notice that the in-
clusion of the added exponential term of (28) with the normal
Type | open-loop gain results in very good agreement between
the two mathematical models for frequencies well within the
closed-loop bandwidth. The phase of the open-loop gain func-
tion would be very inaccurate had the exponential term been
left out. As the loop bandwidth increases with respect to the
reference frequency, the approximation shows more and more
deviation from the true open-loop gain calculated by (9). [Note
that for all cases, T/r1 >>> 1 has been assumed with loop band-
width << Fq.]

In order to he complete, the same calculation was performed
for the Type [l phase-locked loop with a phase-frequency detector
and smalf RC lowpass filter “*hold."’ The continuous form of the
open-loop gain function is given in (29) where T is due 1o the
phase detector transfer function.

(29)
Kd T 1+5 12 Ky

1+ 87 stl N s
Our approximation to G*ol(s) is found using equation (28).
(30)

Gol(s) =

Kd 1+s12 Kv

G ol(s)~ exp{-sT/2
(=) Rl ) i+st st1 N S

The true tunction G*ol(s) is found again from substituting
equation (29} into (9). 31)

‘.’2-:° KdT 1+u 2 Kv
=-0 1+ur u-rt Nu

1
Grolg= —

where u =5 + jnWs
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Reiterating, the T following Kd is due to the phase detector
transfer function, (20), whereas the 1/T is due to the leading coef-
ficient in (14).

A second computer program and sample run are provided in
Appendix | for this Type || phase-iocked loop case. Once again,
the bandlimited gain expression in (30) closety approximates the
true gain function (31) for frequencies well within the closed-loop
bandwidth.

In concluding this article, several statements stand out.

* In order to make any correlation between sampled and con-
tinuous systems, some form of analog ‘'hold” device impulse
response of the hold device is the interpolating waveform bet-
ween sample points in the time domain.

* The appearance of sampling in any loop with the accompany-
ing “*hold” device, causes an exponential phase term to appear,
exp(-sT/2).

» Sampling effects in small percentage bandwidth icop (wrt.
F.e) Mmay be quite accurately described by the normal con-
tinuous open-loop gain function provided that the additional ex-
ponential term is included.

Sampling eftects cause the appearance of the exponential
delay-like term whenever quantities within the loop are only
available at dicrete instants in time. Digital dividers within the
feedback loop in an otherwise continuous loop will still cause
the exponential term to appear. If digital feedback dividers and
a digital phaseffrequency detectar are used within the phase-
locked loop together, only one exp(-sT/2) term results {the con-
tinuous first order approximation remains unchanged). True

transport delay within the loop is accounted for by another ex-
ponential delay term. (Here, true transport delay refers to delay
through op-amps and propagation delay refers to delays through
other components, including dividers. These quantities are
available in component data books.)

Analysis of the phase/frequency detector in a phase-locked
loop can be considerably more compiex than the usual con-
tinuous analysis which is generally employed. If the loop band-
width is, say, < F4/40, the ioop can be considered continuous
for all practical purposes. For higher percentage bandwidths,
attention should be given to the added ‘‘delay-like’’ term shown
in equation (28) and care should be given to insure that T/t2
is > 3 in equation (20). [If T/r2 < 3, another integrator in the form
of a time variable fiter is created which makes the siluation much
more complex. Of course, keeping T/12 > 3 will result in higher
spurs and notch filtering will undoubtably be required. The time
variable filter increases the gain within the loop bandwidth and
adds substantial phase as well which ¢an easily lead to instabili-
ty. For best resuits, choose T/x2 > 3]

Although the cautious aspects of sampled phase-locked loop
design have been brought out for the phasel/frequency detec-
tor, sampled systems harbor much more capability than first
glance indicates. For instance, a Type | sampled loop which
employs a zero order sample and hold rather than the phase/fre-
quency detector will theorectically perform phase-lock in only
one sample period! An ideal Type Il phase-locked loop with a
zero order sample and hold phase detector is capable of per-
forming phase-iock in only two sampie periods. These speed-
optimized phase-locked loops must be analyzed using
Z-transforms.s
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Appendix |

FILE: SaMPLL 71 PAGE @81

1B CEFERNREXRARRAAARZIENNRX

2

38 Comparison of Sum!
%

S CRREENENERREEFERRALEEAR

&8 DIM PT5(20) ,MAG(20) ANG(2E
62 Ple3, 1415924544

7 FOR Ix=) TO |7

8p READ PTS(IX)

f0 NEXT I¥%

18% DATA 189,150,200 ,309,408,508 70@ , 1000, 1500, 2060, 3082, 4800, 5000, 7RRE
118 DATA gBpe,ved8, 18080

128 -

138 INPUT “NUMBER OF HARMONICS TQ INCLUDE *;NRARM:

135 INPUY "JNPUT REFERENCE RATE, HI *FREF

13¢ INPUT "INPUT THL TYPE I LOCP (" ST

Fis 4 jnWs) ] with 2=transforms

137
13¢
148
129
168
179
180
1%9
260
218
22¢
230
238
248
256
248
278
288
259
LY
318
320
330
333
34p
ase
351
3%z
353
354
355
356
as?
353
340
e
374
372
388
399
494
ap1
402
403
404
aie

INPUT "INPUT THE LOW-PASS FILTER
TAL=TAUES . PPPPP7L- 18

TIMECONSTANT, NSEC';Tal

FOR =1 TO 7
SUMR=E
Sk l=g
FOR J7=l TO NMARM,
FRBTHLIAY v JAEFREF
GOsUB 1eee
SUMR=SUHR + FR
SUMImSUM] + FI
F=PTS01%) - JW¥FREF
GRgue leag
SUMR*SUME + FR
SUMI=SM] + F)
NEXT [/
F=PTS( LAY
GOSUB ipee
SUHR=SUMR + ER
SMImSM] + FI
MAG1Ar =g 3424060 SUMR2 + SUMI*2 )
ANG{ T =ATN{SUMI/LSUMR + 1E-88))
[F SUMR{B THEN ANG(IXrmaNG{]¥)~F]
ANG (17 waNG 70 X 180/P]
NEXT 1%
PRINT CHR$( 24>

LPRINT “Number of ha~monic terms included itn summation " iNmaRM,
LPRINT
LPRINT *Locp reference freguency ";FREF
LPRINT
LPRINT "Type 1 loop #Wn  “3#h
LPRINT
LFRINT ®Loop LPF time constant, nsec “;TAUXIE+8%
LPRINT
LPRINT *APPROXIMATION TO SAMPLED DPEN-LOOP GAIN FUNCTION®
LFRINT * Continuoue Gal”
WRERINT Summation of Gol Terms Expt =57-2 '
LPRINT
LPRINT *F Gol ,dB ang.Deg *
LPRINT ~ -
FOR %=} TQ 17
F=FTSe 1)
BOSUB 1888
NORGAINWE , 34274 ¥ LOG( FR"2 + Fl*2 )
NORANG=E ~ W¥.S~/FREF
LPFRINT USING "HuMNNNN LLET N ] (LT 1] WHNM R [TTT

T SPTS LY MAGCTXL (ANGOTX) (NORGAIN  NORANGE 1B8/P]



424
438

NEXT 1%
STOP

1860 “KXXEAXEEXNENEXLER

1218 - OPEN LOOP GAIN FLNCTION, CONTINUOUS
1828 " EXEXIEFIFAXTANIRK

1838 WeFEZ2ER]

104 AebN0 WISOR: 1+ (WETALISZ 3 3

1858 B=-Pl#.5 - ATNIWFTALY

1848 FR=AXL0S(ED

1878 Fl=AISIN(B"

1888 RETURN
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RESEXEFEEEXENNENRENNK R

. Comparison of Suml Fis + jnks) 1 with 2~transforms
CERATERERAANARERNALENAY
DIM PTS{28) ,MAG{28) ,ANG(26)
Pl=3, 1415724544
FOR l¥=) TO 17
READ PTS(I
NEXT 14
DATA 190,180,200 ,300 ,480,%500,708,1802 , 1588 , 2086 ,3009 ,4608,5608 , 7068
DATA BUED 90098, 18008

INPUT "NUMBER OF MARMONICS TG INCLUDE * jNHAR:
INPUT *INPUT REFERENCE RATE, M2 " ;FREF

INPUT “INPUT THE TYPE 1! LOOP W HN

INPUT *INPUT THE LOOP DAMPING FACTOR *;ETA

INPUT *INPUT THE LOW-PASS FILTER  TIMECONSTANT, NSEC®;TAU
TaALeTALXS . PPPPPPE~10

FOR l%=; TG 17

SUMp=g

SuM]1=8

FOR Ji=1 TO NHARM
F=PTS(I%) + JAXFREF
GOSUB 489
SUMR=SUMR + FR
SUMI=SIM] 4 FI
F=PTSCIA) - JAXFREF
BOSUB 4B

a1
320

SUMR=GMR + FR
SUMI=5UMI + F1

338 NEXT J¥

340 F=PTS(IX)

ase GOSUE &80

348 SUMR=SUMR + FR

37 SUHI=SUM] + FI

3ee MAG (L) =d, 342P4XL06( SUMR"2Z + SUMI“Z )
Ive ANG( 7 »ATNCSUHI/ (SLMR + 1E-808))

@t IF 9UMRCE THEN ANGC I/ =ANG(1X) -PI

418 ANG{ T maNG( 120 X 186/P

420 WO 14

438 PRINT CHR$(24)

448 LPRINT
458 LPRINT
448 LPRINT
478 LPRINT
488 LPRINT
498 LPRINT
309 LPRINT
318 LPRINT
528 LPRINT
338 LPRINT
S48 LPRINT
58 LPRINT
368 LPRINT
37¢ LPRINT
588 LPRINT
598 LPRINT

‘Number of harmonic terms included in summation " jNHARM/
"Loop reference freguency " ;FREF

"Type 11 loop Hn  "jWN

“Locp damping factor, Eta ";ETaA

*loop LPF  time constant, nsec “;TAUXIE+8?
*APPROXIMATION TD SAMPLED OPEN-LDDP GAIN FUNCTION®
.

Continyous Got*

. Summation of Gol Terms Exp( =57/2 )"

*F Gol ,dB ang,Deg "

400 FOR jvm] TC .7

619 F=PTS{IX)

&20 GOsSUR 480

630 NORGATN=4,342¢4 ¥ LOGC FR2 + F[~2 )}
449 MNDRANG=E - WX .S/FREF

&58 LPRINT USING “#uiaiud

LU ] LLILN ] LN ]

SRR PTS L) ,MAGCTX) ,ANG (17) \NORGRIN ,MORANGX 18€/F
4468 HEXT 17

678 STOP

480 “EERFAANXNXNTIANEN

498 ¢ OPEN LOOP GAJN FUNCTION, CONTINUOUS |

708 CFEXFENEXEMFRAFAE

718 W=Fi2%F1

728 Ax GANAWD 2 X SORC (14 (ZNETAEW/WN) 2) 7 € 1 + (WETAUY~Z ) D
730 B=-P] + ATN(ZEETAXMWAMN) = ATN(NETAL)

740 FR=AXCOS(H)

758 FI=AXSINC(B)

740 RETURN



