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Overview

• OFDM History

• OFDM for the Indoor Wireless Channel

• Basic OFDM Principles

• Some specifics for IEEE 802.11a OFDM

• Challenges posed by using OFDM

• Wrap-up and Q & A

(Factors that make Magis technology stand out compared to our 
competitors will be discussed in an upcoming Tech Forum session.)
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OFDM History
• OFDM is an acronym for “orthogonal frequency 

division multiplex”

• OFDM or variants of it have found their way into 

a wide range of wireless and wired systems

– DAB- Direct Audio Broadcast (Europe)

– DVB-T- Digital TV (Europe)

– HDTV Terrestrial

– ADSL \ DSL \ VSDL

• Technique can be viewed as a frequency 

multiplexing method or a parallel data 

transmission method
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• Some early developments date back to the 1950’s
• Mosier, R.R., R.G. Clabaugh, “Kineplex, a Bandwidth 

Efficient Binary Transmission System,” AIEE Trans., Vol. 76, 

Jan. 1958

• Parallel data transmission and frequency division 

multiplexing began receiving attention primarily 

at Bell Labs in circa-1965
• R.W. Chang, “Synthesis of Band Limited Orthogonal Signals 

for Multichannel Data Transmission,” Bell Syst. Tech. J., Vol. 

45, Dec. 1996

• B.R. Salzberg, “Performance of an Efficient Parallel Data 

Transmission System,” IEEE Trans. Comm., Vol. COM-15, 

Dec. 1967

OFDM History
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• One of the earliest patents pertaining to OFDM 
was filed in 1970

• “Orthogonal Frequency Division Multiplexing,” U.S. Patent 
No. 3,488,455 filed Nov. 14, 1966, issued Jan. 6, 1970

• Early OFDM systems were extremely complicated 
and bulky. 

• Major simplification resulted using the Fast 
Fourier Transform in transmitters and receivers

• Weinstein, S.B., P.M. Ebert, “Data Transmission by Frequency 
Division Multiplexing Using the Discrete Fourier Transform,” 
IEEE Trans. Comm., Vol. COM-19, Oct. 1971

• Hirosaki, B., “An Orthogonally Multiplexed QAM System 
Using the Discrete Fourier Transform,” IEEE Trans. Comm., 
Vol. COM-15, April 1967

OFDM History
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OFDM for Indoor Wireless Channel

• Communication over the indoor wireless channel 

is made difficult due to the extreme multipath 

nature of the channel.

• The multipath factor is exasperated as range and 

data throughput rate are increased.

• Traditional single-carrier communication methods 

and even spread-spectrum (DSSS) techniques to a 

degree are greatly hampered by the indoor 

multipath channel.
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• OFDM Virtues for Indoor WLAN
• Provides a theoretically optimal means to deal with frequency-

selective fading that arises from multipath

• Combats frequency-selective fading with a complexity level 

that is several orders of magnitude less than a conventional 

single-carrier with channel equalizer system

• Capable of “optimal” bandwidth utilization in terms of bits-per-

Hz throughput

• Fundamentals still permit coherent signaling techniques to be 

used and the benefits associated with them (e.g., counter-

example would be DPSK)

• Proper design permits the data throughput rate to be varied over 

a wide range to support different range/throughput rate 

objectives.

OFDM for Indoor Wireless Channel
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• OFDM Challenges for WLAN
• Transmitter peak-to-average-power-ratio PAPR is 

higher than other traditional single-carrier 
waveforms

• Receiver complexity is high, as are requirements for 
(transmitter and receiver)linearity 

• Difficulty is amplified by our strategic objective to 
move unprecedented data throughput rates reliably 
over the indoor channel to support HDTV, etc.

• Magis is patenting a wide range of algorithms and 
techniques to achieve our objectives thereby making 
it very difficult for competitors to follow

OFDM for Indoor Wireless Channel
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• Multipath and the underlying (time) delay spread 

involved can cripple high-speed single-carrier 

communication systems

OFDM for Indoor Wireless Channel

Multipath over a terrestrial channel 

is not unlike what we deal with 

indoors

Delay spread simply means that 

different frequency portions of the 

signal will reach the receiver at 

different times
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• The performance degradation due to channel-related delay 

spread becomes worse as the delay spread compared to 

each modulation symbol period becomes appreciable.

OFDM for Indoor Wireless Channel
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• Simple 2-ray 
multipath model 
reveals clear 
attenuation peaks 
and nulls across 
the RF frequency 
range

• In the indoor 
channel, many 
many multiple 
propagation paths 
co-exist.

OFDM for Indoor Wireless Channel
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• Delay spread for a given office or home region is given approximately 

as

OFDM for Indoor Wireless Channel

secns metersDelaySpread k FloorArea rms n≈

where k is given as typically 3 nsec/m to 4 nsec/m for office spaces; more 

on the order of 2 nsec/m in residential spaces

• Using this approximation, the delay spread for the third-floor at Magis is 

roughly 85 nsec rms.

• For IEEE 802.11a utilizing a symbol rate of 250 kHz, the normalized 

delay spread is small at 0.0212 rms whereas for a typical single-carrier 

system with a symbol rate of 5 MHz, the normalized delay spread would 

be 0.425 rms !
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• Multipath gives rise to frequency-selective 
channel attenuation and fading which translates to 
reduced theoretical system throughput capacity

OFDM for Indoor Wireless Channel

Ideal flat transmitted RF 

spectrum at 5 GHz

Received signal spectrum due to 

frequency-selective nature of 

propagation channel
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• The theoretical throughput capacity (in the Shannon sense) 

for the channel can be computed as

OFDM for Indoor Wireless Channel

( )2log 1
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F
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where           is the numerical signal-to-noise ratio of the 

received signal across the modulation bandwidth on a per-

Hz basis.

• A more useful measure for our purposes is the composite 

channel cutoff rate which is customarily denoted by Ro 

because it takes into account the signal constellation type 

being used.
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• In the case of square quadrature-amplitude modulations (QAM) as in 

IEEE 802.11a, the cutoff rate is given by

OFDM for Indoor Wireless Channel
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where      is the noise spectral 

density at the receiver and 

the            are the ideal 

constellation points.

• This relationship can be 

summed versus SNR across 

the entire OFDM 

modulation bandwidth and 

an effective Ro computed.
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Basic OFDM Principles: Orthogonality

• Orthogonality is a mathematical measure that can 

be defined in both the frequency and time 

domains.

• Orthogonality for real time-functions requires 

( ) ( ) 0x t y t dt

+∞
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=∫ ( ) ( )* 0X t Y f df

+∞
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=∫

Time Domain Frequency Domain

• Fundamental estimation theory principles are 

based upon a similar orthogonality principle in the 

case where x and y are stochastic processes.
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• Many possible choices for orthogonal set of signaling 
waveforms:

• Sine and Cosine waves

• Wavelets

• Perfect-Reconstruction (PR) filter basis sets (e.g., cosine-
modulated filter functions)

• Raised-cosines

• Eigen-functions of suitably defined linear systems

• The choice for the “best” orthogonal function set must be 
based upon (a) the channel involved and (b) complexity.

• It is desirable to have an orthogonal set of waveforms with 
the greatest cardinality possible because orthogonality is 
synonymous with dimensions. More dimensions translate 
into more communication throughput possible.

Basic OFDM Principles: Orthogonality
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Dimensionality Theorem

• Let           denote any set of orthogonal waveforms 

of time duration T and “bandwidth” W. Require that 

each         (1) be identically zero outside the time 

interval T, and (2) have no more than 1/12 of its 

energy outside the frequency interval of –W to +W.

• Then the number of different waveforms in the set       

is overbounded by 2.4WT when TW is large.

• Bottom line is that the theoretical number of 

available dimensions per unit time is limited

Basic OFDM Principles: Orthogonality
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Simple examples of some orthogonal function pairs:

Basic OFDM Principles: Orthogonality
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• Waveform spectra can 
still overlap and be 
orthogonal

• Example shown here is 
from Aware 
Technologies who 
advocated wavelet-based 
DSL signaling in the 
early 1990’s

Basic OFDM Principles: Orthogonality

• The frequency bins in IEEE 802.11a also appear to 
overlap unless Nyquist filtering (i.e., using appropriate 
FFT) is used.
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IEEE 802.11a OFDM utilizes sine and cosine signals spaced 

in frequency by precisely 312.5 kHz as its orthogonal basis 

function set

– Basis set is easily constructed on transmit and dimensionally 

separated on receive using the highly efficient FFT

– Use of a guard interval in front of every OFDM symbol largely 

defeats the delay spread problems by making the multipath appear 

to be cyclic

– Each basis function is tightly contained in frequency extent making 

it possible to equalize the amplitude of each OFDM frequency 

“bin” using simple scalar equalization

– Throughput rates are easily scaled versus range requirements.

Basic OFDM Principles: Orthogonality
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Basic OFDM: Dealing with Frequency-

Selective Multipath
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Basic OFDM: Dealing with Frequency-

Selective Multipath
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• OFDM very effectively combats inter-symbol interference 
from adjacent OFDM symbols by using a time guard 
interval

• For suitably bounded signal delays, the guard interval 
guarantees that the perfect sinusoidal nature of each 
symbol is preserved (i.e., no loss of orthogonality between 
OFDM subcarrier tones.

Basic OFDM: Dealing with Frequency-

Selective Multipath
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• Many different techniques 

have been proposed to 

diminish the degradations 

due to frequency-selective 

channels

• OFDM lends itself to 

many possibilities in this 

regard.

Basic OFDM: Dealing with Frequency-

Selective Multipath

• One concept proposed by MMAC (Wireless 1394 in Japan) makes use of 

selection combining in the frequency space to achieve diversity

• Gains from diversity dwarf the additional gains that could be achieved with 

only more sophisticated FEC
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• Predicting range for the indoor channel is very difficult due 
to multipath and absorption losses in non-line-of-sight 
(NLOS) communications

• First-order model makes use of the long-standing Friis 
formula for range:

Basic OFDM: Range & Throughput
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SNR= Numerical signal-to-noise ratio

F= Noise Factor

Bw= Modulation Bandwidth, Hz

No= Noise Power Spectral Density

PT= Transmit Power

GT= Transmit Antenna Gain

GR= Receive Antenna Gain

n= Range loss exponent

n=2 for free-space

n= 2.5 to 3.0 typical indoors 

due to multipath
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IEEE 802.11a is attractive because (a) its available bandwidth 

makes all forms of communication (notably video) 

possible, and (b) overlapping frequency allocations exist 

world-wide making for a huge business opportunity.

IEEE 802.11a OFDM Specifics
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IEEE 802.11a OFDM Specifics
• IEEE 802.11a is a physical-layer (PHY) specification only
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• Modes

IEEE 802.11a OFDM Specifics

“Straight” IEEE 802.11a 

MAC frame structure. Magis 

has made some important 

enhancements in this area.

“Straight” IEEE 802.11a PHY-

mode chart. Magis has made 

additional enhancements 

possible in this area as well.
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The OFDM physical layer waveform is considerably more complex than 

cellular phone type waveforms.

IEEE 802.11a OFDM Specifics
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IEEE 802.11a OFDM Specifics
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IEEE 802.11a OFDM Specifics
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Minimal PHY functionality required in an IEEE 802.11a receiver:

• Preamble signal detection & AGC estimation

• Coarse and fine frequency estimation

• Fine time estimation

• Channel estimation (From T1 & T2)

• Selective channel filtering

• Frequency and phase tracking

• Guard-time removal

• Demodulation (i.e., FFT)

• Channel equalization

• Signal constellation de-mapping

• Viterbi convolutional decoding

• De-interleaving

IEEE 802.11a OFDM Specifics
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Challenges Posed by OFDM
• Most of the challenges we presently face are due to higher throughput and 

Quality-of-Service (QoS) performance we seek to deliver compared to data-
only providers.

• If we were doing what “everyone else” is doing, we would probably already be 
done.

• Chief challenges include:

– Transmit

• OFDM’s inherently higher PAPR

• RF linearity, primarily power amplifier

– Receive

• Frequency and time tracking

• Extreme multipath scenarios

• Sophisticated diversity techniques that go far beyond anything contemplated 
in IEEE 802.11a (needed for QoS and link robustness)

• General complexity

– MAC

• Delivering graded QoS for many different services

• Anticipating future growth needs & opportunities

• Range and power control (for dense deployments)

• General complexity


