

Photogrammetry Based PV Solutions Part 7: Completing Mechanical

Copyright © 2017-23 AM1 LLC 1 of 43

One

Photogrammetry for Non-Invasive Terrestrial Position/Velocity
Measurement of High-Flying Aircraft

Part 7: Basic Telescope Mount Functionality

James A Crawford

Synopsis

This installment marks completion of the mechanical design and fabrication of
the mount. From this point on, attention will be focused entirely on software
development, both for the C# - based GUI as well as the TMS320F28379D
software in C.

Regarding the mechanical motion, the original cogging torque associated with
the azimuth axis caused me sufficient concern that I decided to redesign and
refabricate the thrust bearing portion of that axis. The associated details are
discussed herein.

While the original elevation axis servo design proved fully functional, the small
3-phase motor overheated (in my opinion) under continuous operation so I
embedded a belt-drive stage with a 5:1 reduction ratio immediately following
the motor to lessen the work-load presented to the motor. With the 80:1
reduction ratio of the harmonic drive, this resulted in an overall “gear ratio” of
400:1 for this axis. The associated details are also described herein.

The balance of this memo recaps the electronic interfaces involved and
provides an update as to the software development with future short-term
plans.

Photogrammetry Based PV Solutions Part 7: Completing Mechanical

Copyright © 2017-23 AM1 LLC 2 of 43

1 Wrapping Up the Mechanical

1.1 Azimuth

In hindsight, the original azimuth axis design left a lot to be desired. The main concern I had looking
forward was the variable/non-uniform viscosity of this axis when it was rotated, and the associated control
system difficulties this could present later. I consequently redesigned the thrust bearing portion of this
axis using a high-quality thrust bearing. The end-results were remarkably improved.

The first step in updating the azimuth axis hardware was fabrication of a new top-plate for the large motor
housing as shown in Figure 1. With this, a new mount for a high-quality thrust bearing had to be made as
shown in Figure 2, with the new large-diameter thrust bearing added in as shown in Figure 3. It is difficult
to see the thrust bearing in Figure 3 because it is a purposely close-fit and it snuggles down into the
roughly half-inch groove unobtrusively.

Figure 1 Redesign and fabrication of the azimuth axis top-plate. Extra holes (and length) were included
along the left-side edge to support the electronics chassis.

The circular disk which supports the elevation yoke also had to be redesigned and fabricated. Although it
looks almost identical to the original disk, the design features on its bottom side had to be completely
redone in order to precisely match up with the new thrust bearing arrangement. This new disk is shown in
Figure 4 in its final mounted position.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 3 of 43

Figure 2 Azimuth plate top-side thrust bearing housing.
The new thrust bearing reside is the large groove.

Figure 3 Repeat of Figure 2 but with the large diameter thrust
bearing now dropped into the large groove

Figure 4 New circular elevation axis disk with original yoke elements attached

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 4 of 43

2 Elevation Axis Revisited

The elevation motor axis at the conclusion of Part VI is shown here in Figure 5. The heart of this drive is
the 80:1 harmonic drive mounted inside the square aluminum housing. As already mentioned, the drive
performed its duties as intended, but became fairly hot with continuous operation. This presented me
some concerns for operational situations where I might want to continuously scan the open sky.

Figure 5 Elevation motor drive at the conclusion of Part VI of
the project

Figure 6 New 5:1 pulley drive added into the elevation
axis drive immediately following the motor (shown
partially completed here). The large pulley has 80
“teeth” and the small pulley has 16.

In order to circumvent this problem, I redesigned the elevation axis to incorporate an additional 5:1 pulley-
drive step-down as shown in Figure 6. A number of new precision parts had to be fabricated in order to
add in this pulley-drive stage. A pulley-drive approach was chosen in order to introduce as little backlash
as possible.

First of all, a new mating-hub had to be fabricated for the harmonic drive as shown in Figure 7. The
driving factor here was that the axle had to be considerably longer than in the original design, but the new
axle was also fabricated from a steel rod for greater toughness as compared to the original aluminum
axle. The new hub is shown attached to the wave generator portion of the harmonic drive in Figure 8.

The steel axle is shown secured into the wave generator hub in Figure 9 with the bottom portion of a
thrust bearing added in Figure 10, and a bored-out GT2 pulley added as shown in Figure 11. The entire
wave generator, new axle, and new pulley were then assembled into the flex-spline of the harmonic drive
as shown in Figure 12. Assembly of the elevation drive is continued in Figure 13, Figure 6, Figure 14, and
Figure 15.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 5 of 43

Figure 7 New hub for the harmonic drive. Set-
screws clearly shown.

Figure 8 New mating hub for the harmonic drive
attached to the harmonic drive wave generator

Figure 9 Harmonic drive hub with new (removable)
longer axle

Figure 10 Same as Figure 9 but the lower half of a
new thrust bearing has also been slipped into place
near the bottom of the axle

Figure 11 A GT2 pulley was milled down and
center-bore increased to precisely mate with the
harmonic drive hub. Note the set-screw access
situated directly in the pulley grooves.

Figure 12 Pulley assembly of Figure 11
reassembled into the original harmonic drive

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 6 of 43

Figure 13 New pulley drive chassis case secured
into the assembly of Figure 12

Figure 14 New harmonic drive cover plate plus
bearings added for the two axes (harmonic drive
and motor)

Figure 15 Fully assembled elevation axis drive motor. With the harmonic drive additions, the completed
harmonic drive chassis is about 1” thicker than the original chassis shown in Figure 5.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 7 of 43

3 Big Picture
A high-level overview of the electronics was provided earlier in [1] and is repeated here in Figure 16. This
diagram does not, however, provide any clues about how the signal processing is to be partitioned
between the TMS320F28379D’s two CPU/CLA1 combos.

In order to incur the smallest amount of 3-phase motor control jitter possible, it is crucial that the ADC and
ePWM activities for each axis be completely synchronous and without any execution-related time-jitter. To
this end, the following functional allocation is being adopted as given in Table 1.

Table 1 Function Partitioning Across TMS320F28379D

Function CPU1 CLA1 CPU2 CLA2
PC-DSP Communications X
Azimuth Non-Critical Time Calculations X
Azimuth Encoder and ADC Operations X
Azimuth ePWM Operations X
Azimuth Control Law Real-Time Calculations X
Elevation Non-Critical Time Calculations X
Elevation Encoder and ADC Operations X
Elevation ePWM Operations X
Elevation Control Law Real-Time Calculations X

The planned update rate for the sampled control systems is to be 16 ksps which provides about 12,500
CPU cycles (at 200 MHz) between control loop samples. Performing real-time synchronous functions
(e.g., reading encoders, launching ePWM cycles) through the CLAs guarantees synchronous operation, a
guarantee which could be tedious to implement in the CPUs.

Since one SPI port must be shared by the two optical encoders, both Azimuth and Elevation encoders
need to be read using the same CLA in order to avoid timing conflicts. Two possible resource allocations
come to mind as sketched out in Figure 17.

TMS320F28379D

PC – DSP
UART Interface DRV8301

Booster Pack

DRV8301
Booster Pack

3
Az Motor

3
El Motor

SPI Port
Expander

6
Az Encoder

El Encoder
6

Raspberry Pi4

DSP – RP4
UART Interface

HQ Camera

GPS Receiver

1PPS

GPS – RP4
UART Interface

Camera
Interface

Figure 16 Multi-processor approach going forward to accommodate (i) Az & El 3-phase motor control, (ii)
Az & El optical encoders, and (iii) Raspberry Pi4 to host an HQ image sensor and GPS receiver2

1 CLA is an acronym for the built-in control law accelerator hardware module. Each CPU has one dedicated CLA
available.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 8 of 43

Read Elevation

16-bits @ 4 Mbps

4 usec

CLA1 Process Elevation
27 usec

Read Azimuth

16-bits @ 4 Mbps

4 usec

Process Azimuth
27 usec

~31 usec ~31 usec
Option #1

Read Elevation

16-bits @ 4 Mbps

4 usec

CLA1

Process Elevation

Read Azimuth

16-bits @ 4 Mbps

4 usec
Process Azimuth

Up to 54.5 usec

Option #2

CLA2

Up to 62.5 usec

Up to 62.5 usec

Figure 17 Single CPU/CLA combo versus dual CPU/CLA combo alternatives3

In some respects, there is no real reason not to use the full computational horsepower of the F28379D
DSP in Figure 17 as it provides up to 117 µs of total CLA processing time versus about 54 µs if only one
CLA is used, a ratio of 2.17 : 1. Going with Option #2 all but guarantees enough computational horse
power will be available while also doubling the total number of CLA Tasks which can be partitioned out.
CPU1 will be used to handle all PC/DSP communications whereas CPU2 remains available for future
growth if needed. This partitioning keeps inter-processor communications at a minimum because Azimuth
and Elevation are handled in separate CLAs. The 117 µs represents about 23,400 available machine
cycles (at 200 MHz) which should provide more than adequate computational capability.

• Regardless, using CPU1/CLA1 and CPU2/CLA2 would entail having to develop CPU1↔CPU2
communications thereby involving several additional software development efforts: (i) CPU1 ↔
CPU2, (ii) CPU2 code, and (iii) CLA2 code.

• Since the nominal rotation rate of either axis uses rotation rates very near zero, using a full
implementation of Figure 27 is not necessary.

• Given this previous point, phase-only control loops should be completely adequate. This does not
minimize supply current magnitudes, but this is not a driving factor at this factor time.

• Note- monitoring di and qi would likely shed light on torque stickiness if it is present. This
capability will no doubt be revisited.

The GUI has undergone a complete make-over for this phase of the project as shown in Table 2.

2 U27771_Part6_Figures.vsd.
3 U28405 Photogrammetry Part 7 Figures.vsd.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 9 of 43

Table 2 Screenshots from TeleTwo C# GUI. The TeleTwo software package is my first entrance into real
telescope motion control

Figure 18 Main screen

Figure 19 Development tools menu

Figure 20 Test available DSP GPIO

Figure 21 Test available DAC outputs

Figure 22 Set Azimuth axis acceleration/deceleration/radian
velocity limits. Identical screen for Elevation axis.

Figure 23 Closed-loop Azimuth/Elevation
assessment

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 10 of 43

Figure 24 Detailed control system parameters

Figure 25 Simplified Azimuth angle read-
back. Identical screen for Elevation.

Figure 26 Sub-menu for overall telescope mount calibration with
star field

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 11 of 43

4 DSP Software Details

A preliminary block diagram of the original algorithm approach4 is shown in Figure 27. As the project
development has matured, a number of significant changes to this original concept have evolved, more
specifically:

Figure 27 Block diagram of originally envisioned algorithm approach5

• Although the TMS320F28379D digital controller has an available high-resolution ePWM

capability, this capability is only6 provided for CPU1/CLA1.
o a algorithm can be used to effectively increase the ePWM’s resolution
o Scheme can be implemented for both CPU1/CLA1 and CPU2/CLA1.
o The high reduction rate for the elevation axis admittedly mitigates this concern, however,

and azimuth control could be carried out by the CPU1/CLA1 pair.
• It is desirable to use the same motor control algorithm for the azimuth and elevation axes in order

to avoid two separate development efforts.
• Precise motor control is only required at very slow rotational rates thereby making the frequency

feedback portion of Figure 27 all but unnecessary.
• The greatest project benefit for the id / iq formulation is to reduce power supply current by applying

optimal torque levels to each axis.
o Reading of the 3-phase currents would be required adding more complexity
o Power supply current savings for the azimuth axis would be quite limited because the

maximum deliverable torque does not exceed the minimum required torque by very
much.

o Therefore, it makes sense to operate the control loops based upon only phase errors
thereby affording design simplification for now.

• The control loop concept must accommodate several different modes with specific attention given
to creation of the external excitation in Figure 27.

4 Figure 26 & Figure 27 of [7]
5 Figure 26 & Figure 27 of [7]
6 High-Resolution ePWM only available on CPU1 and ePWM1-8 per Figure 1 of U26360.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 12 of 43

4.1 Simplified Control Algorithm

Three-phase motor control can be described using complex space vectors which only involve two
orthogonal axes. Utilization of the 2-phase motor model reduces the number of equations and simplifies
the control design [23]. Most of the underlying theory was covered in [7] and will not be repeated here.

4.2 ∆ −Σ Approach to Higher Effective ePWM Resolution

The minimum dead-time for the DRV8301 is 50 nsec per §7.4.2 of [21].

The DRV8301 BoosterPack uses a 1Ω resistor to ground thereby delivering the minimum dead-time of 50
nsec per [22]. Since the dead time behavior is taken care of within the DRV8301, it seems unlikely that
RED and FED available provisions within the ePWMs will have to be used.

The system clock used by the DSP is 100 MHz. The EPWM_TIMER_TBPRD parameter sets the number
of system clock periods used for the time base when the clock dividers are all set to unity. Setting
EPWM_TIMER_TBPRD to 2048 results in an ePWM time resolution of 10 nsec and a ePWM pulse
repetition rate of

100 48.828125

2048prr
MHzf kHz= = (1)

Even though the associated interrupt rate is roughly 50 kHz, updating the control loop elements every 2nd
or even 4th interrupt should be more than sufficient. The extra sampling rate can still be advantageously
used to implement a simple first-order ∆-Σ modulator for each motor phase rather than having to resort to
the more complicated high-resolution ePWM mode (which is only available with CPU1 anyway).

Using EPWM_TIMER_TBPRD = 2048 makes the rounding operation associated with the ∆-Σ modulator
shown in Figure 28 a simple binary-shift operation (11 bits with sign extension) which is attractive.

Σ Σ
kvin

0 kvin TBPRD≤ <

0.5

Truncate to M-bits To ePWM

Σ
ke

Σ

D

kvoutUnsigned
M-Bit

Integer

float32

Figure 28 Simple 1st-order ∆-Σ modulator for improved suppression of low-frequency quantization-related
output noise7

7 From U27771_Part7_Figure.vsd.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 13 of 43

In the context of voltages Vβ and Vβ as discussed in §10 of [7] for a phase argument θ , the 3-phase
voltages can be found by effectively inverting (44) as

2 1 1
3 3 3

1 10
3 30

1 1 1

a

b

c

V V
V V

V

a

β

− −

− =

 (2)

from which

1 0
1 3

2 2
1 3

2 2

a

b

c

V
V

V
V

V

a

β

 − = − −

 (3)

where

()
()

0.50 1 cos

0.50 1 sin
o

o

V TBPRD A

V TBPRD A
a

β

θ

θ

= × +
= × +

 (4)

with 0 oA TBPRD≤ ≤ .

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 14 of 43

4.3 Smooth Telescope Move Commanding

4.3.1 Method 1

Smooth motion of the telescope mount in azimuth and elevation is important, particularly for large angular
steps. One method was sketched out in §8 of [7] which will serve as the starting point for a later
discussion in this section.

I originally considered using a lowpass-filtered frequency-step function for positioning the telescope (in
azimuth and elevation) but the resultant movement was not at all smooth at the beginning of the
associated move as shown in Figure 29, but rather abrupt. The associated Laplace transfer function for
the 2nd-order all-pole lowpass filter is given by

 ()
2

2 22
n

n n

H s
s s

ω
ςω ω

=
+ +

 (5)

This can be converted to sampled-digital form using the bilinear transform leading to

 () () ()22 1

1 2

1n
o i

z
z z

a bz cz
ω

θ θ
−

− −

+
=

+ +
 (6)

Figure 29 Lowpass-filtered phase step response8

with

2
2

2
2

2
2

42

82

42

n
n

n

n
n

a
T T

b
T

c
T T

ςω ω

ω

ςω ω

 = + +

= −

 = − +

 (7)

8 u28404_smooth_positioner.m.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time, sec

A
ng

le
, r

ad

Lowpass Filtered Phase Step for Positioning

Double-Step Response (Bilinear Transform)
Single-Step Closed-Form Theory

LPF fn= 4 Hz
 ζ= 0.99
fs= 8 kHz

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 15 of 43

4.3.2 Method 2 (Originally from §8 of [7])

If an axle is to be rotated θcmd radians, this needs to be done (i) within a prescribed amount of time, (ii)
with a specified degree of smoothness, and (iii) with a radian velocity no greater than a specified limit.
These requirements are not mutually independent, however. For structural safety, it is better to think in
terms of (iv) maximum angular velocity allowed and (v) maximum angular acceleration allowed since (v)
limits the applied current and consequently the applied torque and (vi) limits the total rotational inertia
allowed in the system.
 With items (v) and (vi) in mind for large angular changes, the methodology outlined in Figure 30
achieves both objectives while being relatively simple. In this figure, the (positive) angular acceleration is
limited to max max2 / ra Tθ ω= rad/sec2 and the radian velocity is limited to ωmax rad/sec. A computed
example9 is shown in Figure 31.

2

2

d
dt
θ

d
dt
θ

θ

ω

aθ

rT

sT

Figure 30 Angular acceleration and angular velocity should be constrained in order to limit the torque
required and rotational speed used

Figure 31 Computed example using the concepts of Figure 30. Maximum radian acceleration limited to 8
rad/sec2 and maximum radian velocity limited to 1.6 rad/sec. Time required to traverse 4 radian change is
about 2.5 sec.

9 u25930_rotation_trajectory.m.

0 0.5 1 1.5 2 2.5 3 3.5
-8

-6

-4

-2

0

2

4

6

8

Time, sec

θ
| ω

 |
ω

 a
cc

el

Axle Rotation

θ
dθ/dt
d2θ/dt2

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 16 of 43

Figure 32 Close-up of Figure 31

More concisely in the context of Figure 30 and Figure 31, denote the maximum angular

acceleration as maxaθ . Assuming that the angular rotation is in the positive sense, denote the maximum

allowed angular velocity as maxω . From Figure 30,

 max

max

2
rT

aθ

ω
= (8)

For simplicity, the same value of Tr can be used for all cases. Denote the maximum possible phase
change impressed during the rotational acceleration as pmaxθ where

1
2pmax max rTθ ω= (9)

Denote the commanded rotational phase change by cmdθ .

()max

2

2

2
2

0

4
2

cmd r

cmd pmax cmd max r cmd
s r

max max max

s

r
p

cmd

r

if T

TT T

else
T

Ta

a
T

end

θ

θ

θ ω
θ θ θ ω θ

ω ω ω

θ

θ

>

− −
= = = −

=

=

=

 (10)

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.5

1

1.5

2

2.5

Time, sec

θ
| ω

 |
ω

 a
cc

el

Axle Rotation

θ
dθ/dt
d2θ/dt2

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 17 of 43

where θcmd is the desired rotation angle change in radians. From the previous two figures, in the case
where Ts ≡ 0,

 ()

0
2
3

2 2
3 2
2

r

r
r

r r

a Tt

a t a T t T

a T t T

θ

θ

θ

< ≤
 = − < ≤

 < ≤

 (11)

and otherwise zero. In the case where Ts ≠ 0,

 ()

0
2

2
3
2

3 2
2

r

r
r

r s s r

s r s r

a Tt

a T t T
a t

a T T t T T

a T T t T T

θ

θ

θ

θ

 < ≤

− < ≤

= − + < ≤ +

 + < ≤ +

 (12)

but otherwise equal to zero. Given a(t), the radian velocity and angle are given by

() ()

() ()

0

0

t

t

t a u du

t u du

ω

θ ω

=

=

∫

∫
 (13)

4.3.3 Additional Smoothing

The phase trajectory shown in Figure 31 and Figure 32 is very smooth as desired, but it can be made
even more smooth by replacing the triangular acceleration pulses shown in Figure 31 with raised-cosine
pulses as shown in Figure 33. In this approach, the triangular acceleration pulse is replaced by a raised-
cosine pulse where the angular acceleration is given by

 () ()1 cos
0

2 r

t
a t a for t Tθ

γ−
= ≤ ≤ (14)

and the maximum angular acceleration is given by aθ .

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 18 of 43

2

2

d
dt
θ

d
dt
θ

θ

ω

aθ

rT

sT

Figure 33 Smooth control waveform making use of raised-cosine acceleration pulses10

The radian frequency for 0 rt T≤ ≤ is the integral of (14) and given by

 () ()sin
0

2 r

tat t for t Tθ γ
ω

γ

= − ≤ ≤

 (15)

with

 max 2
ra Tθω = (16)

This result makes it possible to rewrite (15) in a more convenient form as

 () ()max sin
0 r

r

t
t t for t T

T
γωω
γ

= − ≤ ≤

 (17)

The instantaneous phase during the ramping interval follows as given by

() ()2
max

2 2

2
2 2max

2
2max

cos 1 0
2

2 sin 0
2 2

2 sin 0
2 2

r
r

r
r

r
r

ttt for t T
T

tt for t T
T

tt for t T
T

γωθ
γ γ

ω γ
γ

ω λ
γ

= − + ≤ ≤

 = − ≤ ≤

 = − ≤ ≤

 (18)

10 U28405 Photogrammetry Part 7 Figures.vsd.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 19 of 43

In this context,

2

rT
πγ = (19)

and

 () max

2
r

pulse r
TT ωθ θ= = (20)

In order to make use of these results, assume that the pointing direction is to be changed by θ∆
(assumed to be positive).

If 2 pulseθ θ∆ ≤ , Ts in Figure 33 can be made zero by choosing

 max
rT
θω ω∆

= ≤ (21)

and using this value for maxω in the previous equations. If, on the other hand, 2 pulseθ θ∆ > , use (20)
along with

max

2 pulse
sT

θ θ
ω

∆ −
= (22)

An example start-up segment using these equations is shown in Figure 34 where the acceleration interval
Tr = 3 seconds and the maximum rotational rate is limited to 36o per second which is quite fast! Adopting
Tr = 5 seconds with a maximum rotational rate of 15o per second is shown in

Figure 34 Start-up motion using raised-cosine trajectory shaping11

11 u25930_rotation_trajectory.m

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time, sec

ra
d/

se
c2 , r

ad
/s

ec
, r

ad

Raised-Cosine Motion Start

Acceleration
Rotation rad/sec
Phase

Tr= 3 sec
ωmax= 0.62832 rad/sec

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 20 of 43

Figure 35 Start-up motion using raised-cosine trajectory shaping12 with lower acceleration than in Figure
34

5 Wrap-Up

This installment wraps-up the mechanical design and fabrication stages as already mentioned. Most of
the mathematics behind the in-work software programming have already been developed in this and
earlier installments.

Moving forward, I have some hard decisions to make. I originally set out to build only one/two telescope
mounts but this has changed to a minimum of 5 or 6. The cost associated with using the 3-phase motors
is appreciable (on the order of $300+). The worst cost-offender, however, is the harmonic drive which has
ballooned from roughly $140 to upwards of $500 or more. I originally intended to host the GUI on a
laptop-class PC, but going this route would add even more cost to each instantiation of the project.
Neither did I factor in any weight constraints with this original design, counting some additional weight as
a positive because it can add physical stability to the mount if properly used. The present mount is
coming in heavier than I would like, however, given the additional use-cases on my drawing board.
Regardless, this has been a wonderful project for me, and it will continue on in one form or another to
completion!

12 u25930_rotation_trajectory.m

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time, sec

ra
d/

se
c2 , r

ad
/s

ec
, r

ad
Raised-Cosine Motion Start

Acceleration
Rotation rad/sec
Phase

Tr= 5 sec
ωmax= 0.2618 rad/sec

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 21 of 43

6 References13

1. J.A. Crawford, “Photogrammetry for Non-Invasive Terrestrial Position/Velocity Measurement of
High-Flying Aircraft- Part 6AB,” October 2022.

2. ____________, “Photogrammetry for Non-Invasive Terrestrial Position/Velocity Measurement of
High-Flying Aircraft- Part 6A,” January 2022.

3. ____________, “Photogrammetry for Non-Invasive Terrestrial Position/Velocity Measurement of
High-Flying Aircraft- Part V: Optical Encoder Completion and Transition to TI DSP,” January
2021, U24933.

4. ____________, “Photogrammetry for Non-Invasive Terrestrial Position/Velocity Measurement of
High-Flying Aircraft- Part V,” U24933, January 2021.

5. ____________, “Photogrammetry for Non-Invasive Terrestrial Position/Velocity Measurement of
High-Flying Aircraft- Part IV: Optical Encoder and Elevation Drive,” U24933, August 2020.

6. ____________, “Photogrammetry for Non-Invasive Terrestrial Position/Velocity Measurement of
High-Flying Aircraft- Part III,” U24933, November 2019.

7. ____________, “Photogrammetry for Non-Invasive Terrestrial Position/Velocity Measurement of
High-Flying Aircraft- Part II, Direct-Drive Motors,” U24933, April 2019.

8. ____________, “Photogrammetry for Non-Invasive Terrestrial Position/Velocity Measurement of
High-Flying Aircraft- Part I,” 2017, U24866.

9. Texas Instruments, “BOOSTAXL-DRV8301 Hardware User’s Guide,” SLVU974, Oct. 2013,
U27331.

10. ________________, “The TMS320F2837xD Architecture: Achieving a New Level of High
Performance,” SPRT720 Feb 2016, U26360.

11. ________________, “TMS320F2837xD Dual-Core Delfino Microcontrollers, Technical Reference
Manual,” Jan. 2019, SPRUHM8H, U26369.

12. ________________, “My (Aluminum) Anodizing Procedure,” 15 Oct 2022, U28255.
13. Elliott D. Kaplan and Christopher J. Hegarty, Understanding GPS, Principles and Applications, 2nd

ed., Artech House, 2006.
14. Harmonic Drive LLC, “HarmonicDrive® Reducer Catalong”, U27619.
15. Oliver Montenbruck and Thomas Pfleger, Astronomy on the Personal Computer, 1999, Springer-

Verlag.
16. Eric Burgess, Celestial Basic, Astronomy on Your Computer, 1985, Sybex.
17. Jean Meeus, Astronomical Algorithms, 2nd ed., 1998, William-Bell.
18. Roger R. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover,

1971.
19. Pratap Misra and Per Enge, Global Positioning System, Signals, Measurements, and

Performance, 2nd ed., Ganga-Jamuna Press, 2012.
20. Richard H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, Revised

Ed., American Institute of Aeronautics and Astronautics, 1999.
21. U25070.
22. U28401
23. Freescale Semiconductor, “PM Sinusoidal Motor Vector Control with Quadrature

Encoder,”DRM105, Rev. 0, 09/2008, U24984.
24. Kvetoslav Belda, “Mathematical Modelling and Predictive Control of Permanent Magnet

Synchronous Motor Drives,”Trans. Electrical Engineering, 2013, U25081.
25. Matthew Piccoli and Mark Yim, “Cogging Torque Ripple Minimization via Position-Based

Characterization,” U25085.
26. Freescale Semiconductor, “3-Phase PM Synchronous Motor Vector Control Using a 56F80x,

56F8100, or 56F8300 Device,” Application Note AN1931, Jan. 2005.

13 Expanded section from Part A.

Photogrammetry Based PV Solutions Part 7:

Copyright © 2017-23 AM1 LLC 22 of 43

7 Appendix: Electrical Interfaces DSP & Custom PWB

A number of updates have been made to the I/O map as summarized in this section.

Figure 36 Top-side of the TMS320F28379D Launchpad board. Note the yellow reset button at the
bottom.

Figure 37 Back-side of the TMS320F28379D Launchpad board. Note the yellow reset button at the top.

J4
J2

J8
J6

J5
J7

J1
J3

J5
J7

J1
J3

J8
J6

J4
J2

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 23 of 43

Table 7-1 DRV8301 I/O Mapping14 to F28379D Configured for Booster Pack Situated Closest to USB
Connector for Elevation Axis (CPU2 in most cases, SPI-A). All of the green signal definitions were
confirmed by way of pin_map.h.

DRV8301
Signal

F28379D Pins DSP
GPIO PCB J# J-

Pin
F28379D Signal
(Not Exhaustive)

Non-DRV8301 Usage

 J1 J3 J4 J2
3.3V 1 J3andJ1 19 3.3V
x 2 32 J3andJ1 17 GPIO32 / SDAA LED1 Power
FAULT 3 19 J3andJ1 15 GPIO19 / SCIRXDB / SPISTEA*
OCTW 4 18 J3andJ1 13 GPIO18 / SCITXDB / SPICLKA
x 5 67 J3andJ1 11 GPIO67 nRST_AZ
x 6 111 J3andJ1 9 GPIO111 nRST_EL
SCLK 7 60 J3andJ1 7 GPIO60 / SPICLKA / SPISIMOB
x 8 22 J3andJ1 5 GPIO22 / SCITXDB / SPICLKB Available- brought out to J17-1
x 9 105 J3andJ1 3 GPIO105 / SCLA / SCIRXDD Available- brought out to J17-2
x 10 104 J3andJ1 1 GPIO104 / SDAA / SCITXDD Available- brought out to J21-1

x 21 J3andJ1 20 5V 5V_ENCODER_B
GND 22 J3andJ1 18 GND GND_ENCODER_B
DC-V-FB 23 J3andJ1 16 ADCIN14 / CMPIN4P
VA-FB 24 J3andJ1 14 ADCINC3 / CMPIN6N
VB-FB 25 J3andJ1 12 ADCINB3 / CMPIN3N
VC-FB 26 J3andJ1 10 ADCINA3 / CMPIN1N
IA-FB 27 J3andJ1 8 ADCINC2 / CMPIN6P
IB-FB 28 J3andJ1 6 ADCINB2 / CMPIN3P
IC-FB 29 J3andJ1 4 ADCINA2 / CMP1N1P
x 30 J3andJ1 2 ADCINA0 / DACOUTA

PWM-AH 40 0 J2andJ4 19 EPWM1A / GPIO0/SDAA
PWM-AL 39 1 J2andJ4 17 EPWM1B / GPIO1/SCLA
PWM-BH 38 2 J2andJ4 15 EPWM2A / GPIO2
PWM-BL 37 3 J2andJ4 13 EPWM2B / GPIO3/SCLB
PWM-CH 36 4 J2andJ4 11 EPWM3A / GPIO4
PWM-CL 35 5 J2andJ4 9 EPWM3B / GPIO5
x 34 24 J2andJ4 7 OUTPUTXBAR1 / GPIO24 /

SPISIMOB
Available- brought out to J17-3

x 33 16 J2andJ4 5 OUTPUTXBAR7 / GPIO16 /
SPISIMOA

Available- brought out to J17-4

x 32 J2andJ4 3 DAC1 New: CPU2 DAC1 to J20-2
x 31 J2andJ4 1 DAC2 New: CPU2 DAC2 to J20-1

GND 20 J2andJ4 20 GND
SCS 19 61 J2andJ4 18 GPIO61 / SPISOMIB /

SPISTEA*

x 18 123 J2andJ4 16 GPIO123 / SD1_C1 /
SPISOMIC

Change: Optical Encoders

x 17 122 J2andJ4 14 GPIO122 / SD1_D1 /
SPISIMOC

Change: Optical Encoders

x 16 J2andJ4 12 RST
SDI 15 58 J2andJ4 10 GPIO58 / SPISIMOA /SPICLKB
SDO 14 59 J2andJ4 8 GPIO59 / SPISOMIA/SPISTEB*
EN-GATE 13 124 J2andJ4 6 GPIO124 / SD1_D2
DC-CAL 12 125 J2andJ4 4 GPIO125 / SD1_C2
x 11 29 J2andJ4 2 GPIO29 / OUTPUTXBAR6 /

SCITXDA
Available- brought out to J17-5

14 From U26355 LAUNCHXL-F28379D Overview, SPRUI77C, August 2016, March 2019. Not all GPIO etc pins are
mapped to J-connectors. See U27334 F28379D Datasheet sprs880k for details.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 24 of 43

Table 7-2 DRV8301 I/O Mapping to F28379D Configured for Booster Pack situated furthest from USB
connector (CPU1 in most cases SPI-B). All of the green signal definitions were confirmed by way of
pin_map.h.

DRV8301
Signal

F28379D Pins DSP
GPIO PCB J# J-

Pin
F28379D Signal
(Not Exhaustive)

Non-DRV8301 Usage

 J5 J7 J8 J6
3.3V 41 J7andJ5 19 3.3V
x 42 95 J7andJ5 17 GPIO95 1PPS from GPS Receiver
FAULT 43 139 J7andJ5 15 GPIO139 / SCIRXDC
OCTW 44 56 J7andJ5 13 GPIO56 / SCITXDC/SPICLKA

x 45 97 J7andJ5 11 GPIO97 Change: Available, brought out
to J21-2

x 46 94 J7andJ5 9 GPIO94 Change: Available, brought out
to J21-3

SCLK 47 65 J7andJ5 7 GPIO65 / SPICLKB/SCITXDA
x 48 52 J7andJ5 5 GPIO52 / SPICLKC SPICLKC for Optical Encoders
x 49 41 J7andJ5 3 GPIO41 / SCLB ZERO_RESET_AZ
x 50 40 J7andJ5 1 GPIO40 / SDAB ZERO_RESET_EL

x 61 J7andJ5 20 5V 5V_ENCODER_A
GND 62 J7andJ5 18 GND GND_ENCODER_A
DC-V-FB 63 J7andJ5 16 ADCIN15 / CMPIN4N
VA-FB 64 J7andJ5 14 ADCINC5 / CMPIN5N
VB-FB 65 J7andJ5 12 ADCINB5
VC-FB 66 J7andJ5 10 ADCINA5 / CMPIN2N
IA-FB 67 J7andJ5 8 ADCINC4 / CMPIN5P
IB-FB 68 J7andJ5 6 ADCINB4
IC-FB 69 J7andJ5 4 ADCINA4 / CMPIN2P
x 70 J7andJ5 2 ADCINA1 / DACOUTB

PWM-AH 80 6 J6andJ8 19 EPWM4A / GPIO6
PWM-AL 79 7 J6andJ8 17 EPWM4B / GPIO7
PWM-BH 78 8 J6andJ8 15 EPWM5A / GPIO8
PWM-BL 77 9 J6andJ8 13 EPWM5B / GPIO9
PWM-CH 76 10 J6andJ8 11 EPWM6A / GPIO10
PWM-CL 75 11 J6andJ8 9 EPWM6B / GPIO11

x 74 14 J6andJ8 7 GPIO14 / OUTPUTXBAR3 /
SCITXDB

SCITXDB for RP4 UART

x 73 15 J6andJ8 5 GPIO15 / OUTPUTXBAR4 /
SCIRXDB

SCIRXDB for RP4 UART

x 72 J6andJ8 3 DAC3 New: CPU1 DAC3 to J20-3
x 71 J6andJ8 1 DAC4 New: CPU1 DAC4 to J20-4

GND 60 J6andJ8 20 GND
SCS 59 66 J6andJ8 18 GPIO66 / SPISTEB*
x 58 131 J6andJ8 16 GPIO131 / SD2_C1 READAZ*
x 57 130 J6andJ8 14 GPIO130 / SD2_D1 READEL*
x 56 J6andJ8 12 RST
SDI 55 63 J6andJ8 10 SPISIMOB / GPIO63/SCITXDC
SDO 54 64 J6andJ8 8 SPISOMIB / GPIO64
EN-GATE 53 26 J6andJ8 6 GPIO26 / SD2_D2/SPICLKB
DC-CAL 52 27 J6andJ8 4 GPIO27 / SD2_C2/SPISTEB*

x 51 25 J6andJ8 2 GPIO25 / OUTPUTXBAR2 /
SPISOMIB

Available, brought out to J21-4

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 25 of 43

7.1 Using GPIO to Emulate SPISTE*
The F28379D has only 3 SPI ports, two of which are dedicated to the DRV8301 Booster Packs as
mentioned earlier. Fortunately, individual GPIO pins can be configured to mimic SPISTE* signals to as
many slave devices as desired with all slaves sharing the SPICLK, SPISIMO, and SPISOMI lines15.
GPIO131 will perform the SPISTE* function for the azimuth encoder read operation, and GPIO130 will
perform the same function for the elevation encoder read function.

DSP Signal
Name

Optical Encoder
30-Wire

GPIO131 (READAZ*) NSL+ (14)

SPICLKC SCL+ (28)

SPISOMIC Dout+ (22)

IDC Wire #

1

2

3

+5V (27, 29)

4

Zero_Reset (12)

5

GND (6, 8, 17, 18)

6nRST_AZ nRST (26)

7

8

SCL- (30)9

NSL- (16)

ZERO_RESET_AZ

GND

Wall_Wart_5V

NCLAZ-

SCLAZ-

Break-Out Box

10-Wire Ribbon Cable
Using 9 of the 10

DB-9 Connector

J6-58

DSP Pin

J2-18

J5-48

J5-49

J1-5

Figure 38 DSP / ribbon cable / encoder wiring16 for Az optical encoder. Duplicate wiring diagram for El
optical encoder except GPIO130 is used for READEL*, ZERO_RESET_AZ and nRST_AZ similarly
modified as shown in Figure 39. The red ribbon cable wire is taken to be #1.

DSP Signal
Name

Optical Encoder
30-Wire

GPIO130 (READEL*) NSL+ (14)

SPICLKC SCL+ (28)

SPISOMIC Dout+ (22)

IDC Wire #

1

2

3

+5V (27, 29)

4

Zero_Reset (12)

5

GND (6, 8, 17, 18)

6nRST_EL nRST (26)

7

8

SCL- (30)9

NSL- (16)

ZERO_RESET_EL

GND

Wall_Wart_5V

NCLEL-

SCLEL-

Break-Out Box

10-Wire Ribbon Cable
Using 9 of the 10

DB-9 Connector

J6-57

DSP Pin

J2-18

J5-48

J5-50

J1-6

Figure 39 DSP / ribbon cable / encoder wiring17 for El optical encoder

15 Described in §18.2.1 of [11].
16 From U27771_Part7_Figures.vsd. Revised here from Part 6.
17 From U27771_Part7_Figures.vsd. Revised here from Part 6.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 26 of 43

1 2 3 4 5
 6 7 8 9

Panel
Front-View

Pins 1,6 Green Phase C
Pins 2,7 Brown Phase B
Pins 3,8 Blue Phase A
Pins 4, 5, 9 Not Used

Figure 40 Front-Panel view of 3-phase motor connector18. Phase nomenclature pertains to DRV8301
pinout whereas colors are for actual wire colors.

18 U27771_Part7_Figures.vsd.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 27 of 43

8 Appendix: Sin() and Cos() Approximations

Three-phase motor control requires highly efficient calculation of sin() and cos() functions suitable for CLA
implementation. The method adopted here is based upon a combination of table look-ups with some
minor additional calculations.

Assume that the angle of interest is θ and that this value is optimally close to the thk angular entry in the
tables such that

 kθ ϕ δ= + (23)
As such,

() () ()
() () ()

()
2

2 2

exp exp exp

cos sin

1
2

1 1
2 2

k

k k

k k

k k k k

j j j

I jQ j

I jQ j

I jQ I Q j Q I

θ ϕ δ

δ δ

δ δ

δ δδ δ

=

= + +

≅ + − +

+ ≅ − − + − +

 (24)

which is equivalently described by Figure 41

ΣCORDICI

Σ
CORDICQ

φ

OUTI

OUTQ

2

1
2
φ

−

φ
Figure 41 Second-order CORDIC correction method19 given by (24). ICORDIC and QCORDIC as provided by
the table look-up steps.

The approximation precision can be further improved with some additional computation as given by

 k

k

II
QQ

a β
β a

−
≅

 (25)

with

19 Figure 5-35 from Advanced Phase-Lock Applications- Synthesis, J.A. Crawford.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 28 of 43

2

2

1
2

1
6

δa

δβ δ

= −

= −

 (26)

8.1 Approximation Performance

The CLA implementation will use IEEE single-precision floating-point calculations. As such, the mantissa
precision is limited to 24-bits or equivalently about ±1.192e-7. MATLAB-based precision estimates20 for
different look-up table sizes are shown in Figure 42 through Figure 45. Consquently, a Sin and Cos table
look-up size of 32 samples (in a single quadrant) is completely adequate to eliminate table size as a
significant contributor to the net overall precision.

Figure 42 Approximation error using sin and cos table look-up sizes of 16 (for one quadrant)

Figure 43 Approximation error using sin and cos table look-up sizes of 24 (for one quadrant)

20 u28446_trial_sin_cos.m.

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4
x 10

-7

Phase, rad

E
rro

r

Sin() Cos() Approximation Error

Cos Error
Sin ErrorTable Look-Up Size= 16

-4 -3 -2 -1 0 1 2 3 4
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-8

Phase, rad

E
rro

r

Sin() Cos() Approximation Error

Cos Error
Sin ErrorTable Look-Up Size= 24

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 29 of 43

Figure 44 Approximation error using sin and cos table look-up sizes of 32 (for one quadrant)

Figure 45 Approximation error using sin and cos table look-up sizes of 64 (for one quadrant)

8.2 MATLAB Script

The first script takes advantage of sin() and cos() table symmetry so that only the first quadrant of values
are stored in the tables. Although this keeps the tables small, the additional computational overhead is
painful to code for the CLA because subroutines and or function calls are not permitted with the CLA code
since the CLAs do not have a stack feature.

%================ u28446_trial_sin_cos.m ================================
%
% MATLAB trial for sin() and cos() approximations
%
% J.A. Crawford
% 19 Feb 2023
%
%
function u28446_trial_sin_cos(table_points, theta_min, theta_max, npts)
%
global sin_table;
global cos_table;
global pi_over_2;
global two_pi;
global dtheta;
global thetas;

disp('===================');
disp(' ');

-4 -3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-8

Phase, rad

E
rro

r

Sin() Cos() Approximation Error

Cos Error
Sin ErrorTable Look-Up Size= 32

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-9

Phase, rad

E
rro

r

Sin() Cos() Approximation Error

Cos Error
Sin ErrorTable Look-Up Size= 64

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 30 of 43

pi_over_2= pi/2;
two_pi= 2*pi;
dtheta= pi_over_2 / (table_points - 1);
disp(['dtheta=', ' ', num2str(dtheta)]);

%
% Build sine and cosine first-quadrant tables
%
sin_table= zeros(1, table_points);
cos_table= sin_table;
thetas= cos_table;

for ii=1:table_points
 thetas(ii)= (ii-1)*dtheta;
 sin_table(ii)= sin(thetas(ii));
 cos_table(ii)= cos(thetas(ii));
end

theta_plot= theta_min + (theta_max - theta_min)*(0:npts-1)/(npts-1);

err_cos= zeros(1,npts);
err_sin= zeros(1,npts);
for ii=1:npts
 ideal_cos= cos(theta_plot(ii));
 ideal_sin= sin(theta_plot(ii));
 [Ix,Qx]= my_cos_sin(theta_plot(ii), table_points);
 %
 % Compute approx values for sine and cosine
 %
 err_cos(ii)= ideal_cos - Ix;
 err_sin(ii)= ideal_sin - Qx;
end

fig1= figure(1);
clf;
axes('FontName', 'Arial', 'FontSize', 12);
p1= plot(theta_plot, err_cos, 'r');
set(p1, 'LineWidth', 2);
hold on
p1= plot(theta_plot, err_sin, 'b');
set(p1, 'LineWidth', 2);
xlabel('Phase, rad', 'FontName', 'Arial', 'FontSize', 12);
ylabel('Error', 'FontName', 'Arial', 'FontSize', 12);
title('Sin() Cos() Approximation Error', 'FontName', 'Arial', 'FontSize', 14);
grid on
h= gca;
set(h, 'LineWidth', 2);

txt1= strcat(['Table Look-Up Size=', ' ', num2str(table_points)]);
annotation(fig1,'textbox','String',{txt1},'FontSize',12,...
 'FontName','Arial',...
 'FitBoxToText','off',...
 'LineStyle','none',...
 'BackgroundColor',[1 1 1],...
 'Position',[0.1757 0.7655 0.2093 0.09595]);

legend('Cos Error', 'Sin Error');

end
%==

function [Ix, Qx]= my_cos_sin(theta, table_points)
%
% Approximation function for cos() and sin()
%
% theta is the angle of interest, rad
% table_points is the number of table look-up points
%
global sin_table; % Table look-up for 1st quadrant
global cos_table; % Table look-up for 1st quadrant
global thetas; % Angles, rad, associated with table look-up

global pi_over_2;
global two_pi;
global dtheta;

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 31 of 43

%
% Constrain angle to within -2pi to +2pi
%
theta= theta - (theta > 0)*two_pi*floor(theta/two_pi) - ...
 (theta <= 0)*two_pi*floor(theta/two_pi);

%
% Contain angle within +/-pi
%
if(theta < -pi)
 theta= theta + 2*pi;
elseif(theta > pi)
 theta= theta - 2*pi;
end

%
% Figure out angle quadrant to apply symmetry later
%
if(theta > 0)
 quad= 1 + (theta > pi_over_2);
else
 quad= 3 + (theta > -pi_over_2);
end

epu= 0.5;
switch(quad)
 case 1
 ang= theta;
 table_index= 1 + floor(ang/dtheta + epu);
 Ixx= cos_table(table_index);
 Qxx= sin_table(table_index);

 dphi= ang - thetas(table_index);
 case 2
 ang= pi - theta;
 table_index= 1 + floor(ang/dtheta + epu) ;
 Ixx= -cos_table(table_index);
 Qxx= sin_table(table_index);

 dphi= -ang + thetas(table_index);
 case 3
 ang= theta + pi;
 table_index= 1 + floor(ang/dtheta + epu);
 Ixx= -cos_table(table_index);
 Qxx= -sin_table(table_index);

 dphi= ang - thetas(table_index);
 case 4
 ang= -theta;
 table_index= 1 + floor(ang/dtheta + epu);
 Ixx= cos_table(table_index);
 Qxx= -sin_table(table_index);

 dphi= -ang + thetas(table_index);
 otherwise
 Ixx= 0;
 Qxx= 0;
end
%
% Apply third-order correction
%
alpha= 1 - 0.50*dphi^2;
beta= dphi*(1 - dphi^2/6); % Approx to sin(dphi)
%
Ix= Ixx*alpha - Qxx*beta;
Qx= Qxx*alpha + Ixx*beta;

end

The second MATLAB script which follows uses one full-length table of sin() values covering [-π, π) with
index manipulation to provide both sin() and cos() values. Owing to the full-length table, quadrant-related
computations are completely avoided, making this script better suited for CLA-based computations.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 32 of 43

%================ u28483_trial_sin_cos.m ================================
%
% MATLAB trial for sin() and cos() approximations
% Uses one 4-quadrant sin() table
% Table quadrant-symmetries not exploited in order to keep CLA code
% more simple
%
% J.A. Crawford
% 19 Feb 2023
%
%
function u28483_trial_sin_cos(table_points, theta_min, theta_max, npts)
%
global sin_table;
global cos_table;
global pi_over_2;
global two_pi;
global dtheta;
global thetas;

disp('===================');
disp(' ');

pi_over_2= pi/2;
two_pi= 2*pi;

dtheta= two_pi / (table_points - 0);
disp(['dtheta=', ' ', num2str(dtheta)]);

%
% Build sine table
%
sin_table= zeros(1, table_points);
thetas= sin_table;

for ii=1:table_points
 thetas(ii)= -pi + (ii-1)*dtheta;
 sin_table(ii)= sin(thetas(ii));
 cos_table(ii)= cos(thetas(ii));
end

prt_case= 4;
for ii=1:table_points
 switch(prt_case)
 case 1
 %
 % Print thetas
 %
 disp(strcat(num2str(thetas(ii), '%10.8f\n')));
 case 2
 %
 % Print sin()
 %
 disp(strcat(num2str(sin_table(ii), '%10.8f\n')));
 case 3
 %
 % Print theta, sin()
 %
 disp(strcat([num2str(thetas(ii), '%10.8f'), ' ', num2str(
sin_table(ii), '%10.8f\n')]));
 case 4
 %
 % Print theta sin(), cos()
 %
 disp(strcat([num2str(ii), ' ',num2str(thetas(ii), '%10.8f'), ' ',
num2str(sin_table(ii), '%10.8f'), ...
 ' ',
num2str(cos_table(ii), '%10.8f\n')]));

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 33 of 43

 end
end

theta_plot= theta_min + (theta_max - theta_min)*(0:npts-1)/(npts-1);

err_cos= zeros(1,npts);
err_sin= zeros(1,npts);
for ii=1:npts
 ideal_cos= cos(theta_plot(ii));
 ideal_sin= sin(theta_plot(ii));
 [Ix,Qx]= my_cos_sin(theta_plot(ii), table_points);
 %
 % Compute approx values for sine and cosine
 %
 err_cos(ii)= ideal_cos - Ix;
 err_sin(ii)= ideal_sin - Qx;
end

fig1= figure(1);
clf;
axes('FontName', 'Arial', 'FontSize', 12);
p1= plot(theta_plot, err_cos, 'r');
set(p1, 'LineWidth', 2);
hold on
p1= plot(theta_plot, err_sin, 'b');
set(p1, 'LineWidth', 2);
xlabel('Phase, rad', 'FontName', 'Arial', 'FontSize', 12);
ylabel('Error', 'FontName', 'Arial', 'FontSize', 12);
title('Sin() Cos() Approximation Error', 'FontName', 'Arial', 'FontSize', 14);
grid on
h= gca;
set(h, 'LineWidth', 2);

txt1= strcat(['Table Look-Up Size=', ' ', num2str(table_points)]);
annotation(fig1,'textbox','String',{txt1},'FontSize',12,...
 'FontName','Arial',...
 'FitBoxToText','off',...
 'LineStyle','none',...
 'BackgroundColor',[1 1 1],...
 'Position',[0.1757 0.7655 0.2093 0.09595]);

legend('Cos Error', 'Sin Error');

end
%==

function [Ix, Qx]= my_cos_sin(theta, table_points)
%
% Approximation function for cos() and sin()
%
% theta is the angle of interest, rad
% table_points is the number of table look-up points
%
global sin_table; % Table look-up for 1st quadrant
global thetas; % Angles, rad, associated with table look-up

global two_pi;
global dtheta;

prt_on= false;

%
% Constrain angle to within -pi to +pi
%
if(prt_on)
 disp(['theta in = ', num2str(theta)]);

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 34 of 43

end

if(abs(theta) > pi)
 theta= theta - two_pi*floor(theta/two_pi);
end

if(prt_on)
 disp(['theta out=', ' ', num2str(theta)]);
end

table_index= floor(theta/dtheta + 0.5) + table_points/2 + 1;
if(table_index > table_points)
 table_index= table_index - table_points;
end
if(table_index < 1)
 table_index= table_index + table_points;
end
Qxx= sin_table(table_index);

dphi= theta - thetas(table_index);
if(dphi > pi/4) % dphi should be small
 dphi= dphi - 2*pi;
end
if(dphi < -pi/4) % dphi should be small
 dphi= dphi + 2*pi;
end

table_index2= table_index + table_points/4; % Exploit table symmetry
if(table_index2 > table_points)
 table_index2= table_index2 - table_points;
end
Ixx= sin_table(table_index2);

if(prt_on)
 disp(['theta=', ' ', num2str(theta), ' ','table index=', ' ', num2str(table_index),
' ', ...
 'theta table=', ' ', num2str(thetas(table_index)), ' ', 'sin=', ' ',
num2str(Qxx), ' ', 'cos=', ' ', num2str(Ixx)]);
end

%
% Apply third-order correction
%
alpha= 1 - 0.50*dphi^2;
beta= dphi*(1 - dphi^2/6); % Approx to sin(dphi)
%
Ix= Ixx*alpha - Qxx*beta;
Qx= Qxx*alpha + Ixx*beta;
if(prt_on)
 disp([' Polished sin=', ' ', num2str(Qx), ' ', 'Polished
cos=', ' ', num2str(Ix)]);
 disp([' Exact sin=', ' ', num2str(sin(theta)), ' ', 'Exact
cos=', ' ', num2str(cos(theta))]);
 disp([' sin err=', ' ', num2str(Qx-sin(theta)), ' ', 'cos
err=', ' ', num2str(Ix-cos(theta))]);
 disp([' alpha=', ' ', num2str(alpha), ' ', 'beta=', ' ',
num2str(beta)]);
 disp(' ');
 pause
end

end

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 35 of 43

9 Appendix: ePWM Programming

Getting on track with ePWM programming can be rather challenging. Prior to about 2019, the C2000
software from Texas Instruments (TI) was organized differently than it is now and the older literature can
consequently be difficult to follow. C2000Ware is the successor to controlSUITE as the centralized,
interactive, software repository for everything C200021. In addition, not all motor control application notes
make use of controlSUITE or C2000Ware. And with this change, C2000Ware, unlike controlSUITE, is
versioned at the packed level thereby resulting in a separate directory installation for each revision!
Consequently, this naturally leads to multiple versions of C2000Ware being installed at the same time.

TI also provides their SysConfig utility for configuring the ePWM module along with many other modules
within the F2837xD device. Picking which design path to adopt again requires some measuring of the
cost before starting the journey because each option presents positives as well as negatives.

It is easy to get a bit overwhelmed with the enhanced pulse width modulator (ePWM) programming of the
TMS320F28379D as there are 7,398 lines of code in the epwm.h file, and 1,650 lines of code in the
hrpwm.h file. Example files focusing on the ePWM blocks are fairly minimal as well, and one must dive
into the full-control code examples (e.g., IDDK_PM_Servo_F28379x) to see the full scope of the ePWM
blocks in use.

The technical reference manual [11] devotes 89 pages to the ePWM function plus an additional 25 pages
to discuss the high-resolution pulse width modulator function. The register map discussion is 132 pages
long itself.

The F28379D’s ePWM modules provide far more features, however, than required for my motor control
application. This leads to a lot of programming simplification.

Figure 46 ePWM module block diagram22

21 “controlSUITE to C2000Ware Transition Guide,” SPRUI45C, Revised Dec. 2019, U28389.
22 Figure 11 of [10].

A potentially helpful full delineation of the ePWM bit-level control parameters can be
found in F2837xD_epwm.h and F2837xD_epwm_xbar.h.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 36 of 43

A 3-phase inverter arrangement suitable for permanent magnet synchronous motors is shown23 in Figure
47. Each leg must switch at the same frequency and all legs must be synchronized for proper operation.
A master plus two slaves can fulfill this need. The associated timing diagram is shown in Figure 48.

A 3-phase interleaved configuration can be constructed by using the phase registers (TBPHS) of each
PWM. A PWM module can be configured (see Figure 49) to allow a SyncIn pulse to cause the TBPHS
register to be loaded into the TBCTR register thereby maintaining the desired phase relationships.

Figure 47 Control of dual 3-phase inverter stages as is commonly used in motor control24

23 Figure 15-66 from [11].
24 Figure 15-66 from [11].

One subtle point worth mentioning is the use of the Figure 48 timing. Since the ePWM pulse widths
are all tied to their respective CA triggers, the distance from the center of each pulse remains
constant. This means the effective time delay between pulse centers remains constant as well. This is
of vital importance in most applications because the effective time delay through the block would
otherwise vary. Using the ePWM in up/down mode ensures the group-delay remains constant.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 37 of 43

Figure 48 Phase inverter diagrams associated with Figure 47 illustrating only one of the 3-phase
inverters shown operating at different output pulse widths

Figure 49

9.1 Direct Copy from [10]

The time-base submodule consists of a dedicated 16-bit counter, along with built-in synchronization logic
to allow multiple ePWM modules to work together as a single system. A clock pre-scaler divides the
EPWM clock to the counter and a period register is used to control the frequency and period of the
generated waveform. The period register has a shadow register, which acts like a buffer to allow the
register updates to be synchronized with the counter, thus avoiding corruption or spurious operation from
the register being modified asynchronously by the software. The time-base counter operates in three
modes: up-count, down-count, and up-down-count. In up-count mode the time-base counter starts
counting from zero and increments until it reaches the period register value, then the time-base counter

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 38 of 43

resets to zero and the count sequence starts again. Likewise, in down-count mode the time-base counter
starts counting from the period register value and decrements until it reaches zero, then the time-base
counter is loaded with the period value and the count sequence starts again. In up-down-count mode the
time-base counter starts counting from zero and increments until it reaches the period register value, then
the time-base counter decrements until it reaches zero and the count sequence repeats. The up-count
and down-count modes are used to generate asymmetrical waveforms, and the up-down-count mode is
used to generate symmetrical waveforms.

The counter-compare submodule continuously compares the time-base count value to four Counter
Compare Registers (CMPA, CMPB, CMPC, and CMPD) and generates four independent compare events
(that is, time-base counter equals a compare register value) which are fed to the action-qualifier and
event-trigger submodules. The counter compare registers are shadowed to prevent corruption or glitches
during the active PWM cycle. Typically CMPA and CMPB are used to control the duty cycle of the
generated PWM waveform, and all four compare registers can be used to start an ADC conversion or
generate an ePWM interrupt. For the up-count and down-count modes, a counter match occurs only once
per cycle, however for the up-down-count mode a counter match occurs twice per cycle since there is a
match on the up count and down count.

The action-qualifier submodule is the key element in the ePWM module which is responsible for
constructing and generating the switched PWM waveforms. It utilizes match events from the time-base
and counter-compare submodules for performing actions on the EPWMxA and EPWMxB output pins.
These actions are setting the pin high, clearing the pin low, toggling the pin, or do nothing to the pin,
based independently on count-up and count-down time-base match event. The match events are when
the time-base counter equals the period register value, the time-base counter is zero, the time-base
counter equals CMPA, the time-base counter equals CMPB, or a Trigger event (T1 and T2) based on a
comparator, trip, or sync signal. Note that zero and period actions are fixed in time, whereas CMPA and
CMPB actions are moveable in time by programming their respective registers. Actions are configured
independently for each output using shadowed registers, and any or all events can be configured to
generate actions on either output.

The dead-band submodule provides a classical approach for delaying the switching action of a power
device. Since power switching devices turn on faster than they turn off, a delay is needed to prevent
having a momentary short circuit path from the supply rail to ground. This submodule supports
independently programmable rising-edge and falling-edge delays with various options for generating the
appropriate signal outputs on EPWMxA and EPWMxB.

The trip-zone submodule utilizes a fast clock independent logic mechanism to quickly handle fault
conditions by forcing the EPWMxA and EPWMxB outputs to a safe state, such as high, low, or high
impedance, thus avoiding any interrupt latency that may not protect the hardware when responding to
over current conditions or short circuits through ISR software. It supports one-shot trips for major short
circuits or over current conditions, and cycle-by-cycle trips for current limiting operation. The trip-zone
signals can be generated externally from any GPIO pin which is mapped through the Input X-Bar (TZ1 –
TZ3), internally from an inverted eQEP error signal (TZ4), system clock failure (TZ5), or from an
emulation stop output from the CPU (TZ6). Additionally, numerous trip-zone source signals can be
generated from the digital-compare subsystem.

The digital-compare subsystem compares signals external to the ePWM module, such as a signal from
the CMPSS analog comparators, to directly generate PWM events or actions which are then used by the
trip-zone, time-base, and event-trigger submodules. These ‘compare’ events can trip the ePWM module,
generate a trip interrupt, sync the ePWM module, or generate an ADC start of conversion. A compare
event is generated when one or more of its selected inputs are either high or low. The signals can
originate from any external GPIO pin which is mapped through the Input X-Bar and from various internal
peripherals which are mapped through the ePWM X-Bar. Additionally, an optional ‘blanking’ function can
be used to temporarily disable the compare action in alignment with PWM switching to eliminate noise
effects.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 39 of 43

The event-trigger submodule manages the events generated by the time-base, counter-compare, and
digital-compare submodules for generating an interrupt to the CPU and/or a start of conversion pulse to
the ADC when a selected event occurs. These event triggers can occur when the time-base counter
equals zero, period, zero or period, the up or down count match of a compare register (that is, CMPA,
CMPB, CMPC, or CMPD). Recall that digital-compare subsystem can also generate an ADC start of
conversion based on one or more compare events. The event-trigger submodule incorporates pre-scaling
logic to issue an interrupt request or ADC start of conversion at every event or up to every fifteenth event.
The ePWM module is capable of significantly increase its time resolution capabilities over the standard
conventionally derived digital PWM. This is accomplished by adding 8-bit extensions to the High-
Resolution Compare Register (CMPxHR), Time Base Period High Resolution Register (TBPRDHR), and
High-Resolution Phase Register (TBPHSHR), providing a finer time granularity for edge positioning
control. This is known as high-resolution PWM (HRPWM) and it is based on micro edge positioner (MEP)
technology.

The MEP logic is capable of positioning an edge very finely by sub-dividing one coarse system clock of
the conventional PWM generator with time step accuracy on the order of 150 ps. A self-checking software
diagnostics mode is used to determine if the MEP logic is running optimally, under all operating conditions
such as for variations caused by temperature, voltage, and process. HRPWM is typically used when the
PWM resolution falls below approximately 9 or 10 bits which occurs at frequencies greater than
approximately 200 kHz with an EPWMCLK of 100 MHz.

If the ePWM update rate is taken to be 32 kHz, the time available between updates would be 31.25 µs
with the number of 200 MHz clock ticks equal to 6,250. With the instruction execution efficiency of the
TMS320F28379D, this is quite a few clocks. And this number can effectively be doubled if both DSP
cores are used.

9.1.1 Control Law Accelerator (CLA)

The CLA is an independent 32-bit floating-point math hardware accelerator which executes real-time
control algorithms in parallel with the main C28x CPU, effectively doubling the computational
performance.

Each CPU subsystem has its own CLA that responds directly to peripheral triggers, which can free up the
C28x CPU for other tasks, such as communications and diagnostics. With direct access to the various
control and communication peripherals, the CLA minimizes latency, enables a fast trigger response, and
avoids CPU overhead. Also, with direct access to the ADC results registers, the CLA is able to read the
result on the same cycle that the ADC sample conversion is completed, providing “just-in-time” reading,
which reduces the sample to output delay.

Figure 50 Control Law Accelerator (CLA) block diagram

The CLA has access to the LSx RAM blocks and each memory block can be configured to be either

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 40 of 43

dedicated to the CPU or shared between the CPU and CLA. After reset the memory block is mapped to
the CPU, where it can be initialized by the CPU before being shared with the CLA. Once it is shared
between the CPU and CLA it then can be configured to be either program memory or data memory.
When configured as program memory it contains the CLA program code, and when configured as data
memory it contains the variable and coefficients that are used by the CLA program code. Additionally,
dedicated message RAMs are used to pass data between the CPU and CLA, and CLA and CPU.

Programming the CLA consists of initialization code, which is performed by the CPU, and tasks. A task is
similar to an interrupt service routine, and once started it runs to completion. Tasks can be written in C or
assembly code, where typically the user will use assembly code for high performance time-critical tasks,
and C for non-critical tasks. Each task is capable of being triggered by a variety of peripherals without
CPU intervention, which makes the CLA very efficient since it does not use interrupts for hardware
synchronization, nor must the CLA do any context switching. Unlike the traditional interrupt-based
scheme, the CLA approach becomes deterministic. The CLA supports eight independent tasks and each
is mapped back to an event trigger. Since the CLA is a software programmable accelerator, it is very
flexible and can be modified for different applications.

9.1.2 Inter-Processor Communications (IPC)

The IPC module facilitates communications between the two CPU subsystems, and all IPC features are
independent of each other. As discussed in the Memory section, there are two dedicated 1Kx16 blocks of
Message RAM that are used to transfer messages or data between CPU1 and CPU2. One block
configuration is fixed for “CPU1 to CPU2”, and the other block configuration is fixed for “CPU2 to CPU1”.

Messaging can be accomplished using IPC flags and interrupts. There are 32 IPC event signals from
CPU1 to CPU2, and vice-versa. These signals can be used for flag-based event polling and four of them
(IPC0 – IPC3) can be configured to generate IPC interrupts on the remote CPU. IPC Command registers
provide a simple and flexible means for CPU1 and CPU2 to exchange more complex messages. Each
CPU has eight dedicated registers, four for sending messages and four for receiving messages. On the
local CPU, three are writeable registers and one is a read-only register. These same registers are
accessible on the remote CPU as three read-only registers and one writeable register. The given register
names were chosen to support a simple command/response protocol, but they can be used for any
purpose to suit the applications software.

A variety of options exist for supporting IPC. The basic option does not require any software drivers and
uses only the IPC registers for simple message passing. An IPC-Lite software API driver uses only the
IPC registers (that is, no memory used), but is limited to one IPC interrupt or one IPC command/message
at a time. The full IPC software API driver uses circular buffers for message RAMs, and can queue up to
four messages prior to processing. It can also be used with multiple IPC ISRs at a time, but it requires
additional setup in the application code prior to use. Each option has tradeoffs between complexity,
processing overhead, and messaging capabilities.

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 41 of 43

10 Appendix: Additional Reference Materials

Table 10-1 Reference Materials

Title # Comments
TMS320C28x Optimizing C/C++ Compiler
v20.8.0.STS, U27392.

U27392 Compiling, linking, optimization, pragma
directives

TMS320F2837xD Dual-Core Delfino
Microcontrollers, Technical Reference Manual,
U26369.

U26369 Interrupts, timers, memory, DMA, CLA
overview & building application**

Sensorless Field Oriented Control of 3-Phase
Induction Motors Using Control Law Accelerator
(CLA)

U27328 Digital motor control on CLA**

C2000 CLA Software Development Guide U27590 CLA introduction
Programming TMS320x28xx and TMS320x28xxx
Peripherals in C/C++, U26359.

U26359

F2837xD Firmware Development Package,
U27306.

U27306

Sensored Field Oriented Control of 3-Phase
Permanent Magnet Synchronous Motors Using
F2837x, U27432.

U27432

Sensored Field Oriented Control of 3-Phase
Permanent Magnetic Synchronous Motors Using
TMS320F2837x, U27302, U27322.

U27302
U27322

Dual-Axis Motor Control Using FCL and SFRA
on a Single C2000 MCU U27427

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 42 of 43

11 Appendix: Parting Shots

Figure 51 Electronics chassis opened up, showing the
TMS320F28379D Launchpad board, piggy-backed with two
3-phase motor controllers, backed by a custom-designed
break-out PCB, with an AC-to-24VDC switching power supply

Figure 52 Back-side view of the chassis electronics showing
the custom-designed break-out PCB I designed to direct
signals from the DSP Launchpad to DB-9 connectors and
other. In total, there are over 100 I/O lines associated with
the DSP processor and another 50+ associated with the DB-
9 connectors, LEDs, etc.

Figure 53 Front-side of the electronics chassis which I milled,
engraved, and anodized. Front panel anodizing was the
subject of a separate memo [12]. This picture was taken
during development in which the chassis has not been closed
up yet.

Figure 54 Bottom of electronics chassis at the bottom
secured to the mount plate (see Figure 1), the full mount,
open electronics chassis on the left, Haas mill in the
background

Photogrammetry Based PV Solutions Part 7: DSP Software

Copyright © 2017-23 AM1 LLC 43 of 43

Figure 55 A great deal of the software has been written in my office, but full-up/real-time/hands-on code
adjustments on the hardware is done in my shop using a Vaio laptop and large 35” diagonal monitor. The
Vaio ties into a network appliance which hosts all of the code.

	1 Wrapping Up the Mechanical
	1.1 Azimuth

	2 Elevation Axis Revisited
	3 Big Picture
	4 DSP Software Details
	4.1 Simplified Control Algorithm
	4.2 Approach to Higher Effective ePWM Resolution
	4.3 Smooth Telescope Move Commanding
	4.3.1 Method 1
	4.3.2 Method 2 (Originally from §8 of [7])
	4.3.3 Additional Smoothing

	5 Wrap-Up
	6 References12F
	7 Appendix: Electrical Interfaces DSP & Custom PWB
	7.1 Using GPIO to Emulate SPISTE*

	8 Appendix: Sin() and Cos() Approximations
	8.1 Approximation Performance
	8.2 MATLAB Script

	9 Appendix: ePWM Programming
	9.1 Direct Copy from [10]
	9.1.1 Control Law Accelerator (CLA)
	9.1.2 Inter-Processor Communications (IPC)

	10 Appendix: Additional Reference Materials
	11 Appendix: Parting Shots

