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Chapter 5  

Direct Digital Frequency Synthesis 

Direct digital frequency synthesis first came to the forefront as a viable frequency synthesis 
method in circa 1971 [1] and was further popularized by a later IEEE publication [2] in 1975. 
The most recent textbooks on this subject were published circa 2000 ( e.g., [3] ) when advanced 
techniques like noise shaping were still in their infancy, however. The contents of this chapter 
bring this important synthesis technique more up to date. 
 The mathematics behind direct digital frequency synthesis are deeply embedded in 
virtually every modern communication system that employs digital signal processing. The 
distinction between direct digital synthesis and numerically-controlled oscillators (NCOs) has 
become markedly vague. In the dedicated frequency synthesis arena, however, fractional-N 
frequency synthesis based on - techniques has taken substantial market share away from direct 
digital synthesis except in all but the most demanding applications.  
 Direct digital synthesis in the context of this chapter is limited to systems that 
physically utilize a D-to-A converter (DAC) to convert numerical values into a physical analog 
voltage or current output, followed by an anti-aliasing lowpass or bandpass filter.  

5.1 Strengths and Weaknesses 

The strengths and weaknesses of the direct digital synthesis method are primarily dictated by the 
high-speed DAC used to convert the precise sine wave numerical quantities into a physical 
voltage or current. Aside from this key block, it is possible to make the supporting computational 
blocks nearly perfect. Ultimately, the DAC determines what spurious performance is possible 
and its power consumption is the dominant factor in the total power dissipation for a given DDS.  
 Direct digital synthesis is unsurpassed when it comes to 
 

 High-speed frequency or phase switching 
 Wideband phase and or frequency modulation capability 
 Phase linearity and continuity 
 Linear frequency sweeping 

 
With the availability of very high performance 12- and 14-bit DACs now, the range of 
applications where direct digital synthesis is a viable alternative has increased substantially. The 
technique is, however, still suboptimal compared to other available methods when it comes to 
 

 Low spurious performance 
 Lowest power consumption 
 Wideband frequency coverage 
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 Direct digital synthesis is attractive in one regard in that it is largely digital in nature 
aside from the output DAC. Lower frequency applications can incorporate - DACs into the 
design thereby making the entire DDS digital except for the output analog filtering. In general 
though, many factors influence the final design decisions. A grade-card to facilitate some of the 
performance tradeoffs is provided in Table 5-1. 
 
Table 5-1 Direct Digital Synthesis Compared to Alternative Synthesis Methods 

Performance DDS PLL + 
DDS 

Fractional-N 
PLL 

Integer-N 
PLL 

Frequency Step Size A A A C 
Frequency Switching Speed A B C D 
Phase Linearity A A B F 
Phase Modulation A B+ B F 
Linear Frequency Sweep 
Capability 

A B C F 

Close-In Spurious Performance C B B+ A 
Far-Off Spurious Performance D B B+ A 
Power Consumption D B A– A 
Digital Complexity C C B A 
RF/Analog Complexity A C B B 
Overall Complexity B C C+ A 

 
 Direct digital synthesis is generally the preferred approach for systems operating in the 
low frequency range up to several MHz and for high-speed switching or modulation capabilities 
like those required in high-performance radar or arbitrary waveform generation equipment. Other 
methods are generally better suited for RF and microwave applications.  

5.2 Introduction to Direct Digital Frequency Synthesis 

A simplified block diagram for a direct digital synthesizer is shown in Figure 5-1. The sampling 
rate1 is fClock Hertz. A digital accumulator is used to integrate the frequency word represented 
here by DDS  thereby resulting in a time-series of phase values  k that are ultimately converted 
to an output voltage (or current) sine wave using the sin(  k ) calculation and precision output 
DAC. If the lowest frequency Nyquist zone is used at the DAC output, the output frequency of 
the DDS is given by 
 

 Hz
2

DDS
o Clockf f





  (5.1) 

 
The balance of this chapter looks at a wide range of issues pertaining to direct frequency 
synthesis. 

                                                                 
 
 
1  Small-case fo  denotes frequency in Hz throughout this chapter whereas upper-case F denotes an integer 
representation of frequency that is related to the DDS clock rate fClock and phase accumulator total bit-width 
N by F =  ( fo / fClock ) 2

N . 
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Figure 5-1 Basic direct digital synthesizer using a sampling rate of fClock Hz and input frequency 
word value DDS  used to create an output sine wave of fo Hz 

5.3 Direct Digital Synthesis Fundamentals  

Direct digital synthesis fundamentally involves time-sampled signals as suggested in Figure 5-2.2 
The idealized DDS output can be thought of as creating the signal 
 

      Clock Clock
n

d t v nT h t nT




   (5.2) 

 
where h(t) represents the ideal zero-order sample-and-hold function,3 TClock is the time between 
samples, and v(t) is an ideal sine wave given by 
 

    sin 2 ov t f t  (5.3) 

 

S / H

Ideal Sampler

 v t  *v t
h(t)

Ideal Zero-Order
Sample & Hold

 Clock
n

t nT 

 d t

 
Figure 5-2 Idealized mathematical perspective for the DDS 
 
The Laplace transform of d(t) is given by4 
 

       sin
exp Clock

Clock m Clock o
n mClock

f T
D f j f T c f n f m f

f T


 



 

 

      (5.4) 

where 
                                                                 
 
 
2  [6], Appendix 4D and [7], Section 7.3. 
3  h(t) is unity for 0  t < 1 and is otherwise equal to zero. 
4  [6], Appendix 4D and [7], Section 7.3. 
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    
/2

/2

1
exp 2

p

p

T

m o
p T

c v u j f mu du
T




   (5.5) 

 
with Tp = 1 / fo and  fClock = 1 / TClock. The result in (5.4) shows that it is possible to have a spectral 
component at every frequency given by 
 

 o Clockf m f n f   (5.6) 

 
for arbitrary integers m and n. The voltage sine wave v(t) is calculated in a classical DDS by 
using a structure like that shown in Figure 5-1. If the otherwise ideal output DAC exhibits 
harmonic distortion, this can be modeled by using a modified input signal instead of (5.3) as 
 

    
1

sin 2
K

k o
k

v t a k f t


  (5.7) 

 
where the ak coefficients represent the harmonic distortion amplitudes. This ultimately changes 
the cm values computed from (5.5), but the frequencies at which spectral components can be 
present (5.6) remain unchanged.  
 The resultant DDS output spectrum consequently contains many discrete tones at the 
frequencies given by (5.6) with their corresponding amplitudes given by (5.5) and further 
weighted by the sin(x) / x function appearing in (5.4). An example output spectrum (less the 
output anti-alias lowpass filtering) is shown in Figure 5-3 where the fundamental output 
frequency is fo = 112 MHz and the clock frequency is fClock = 300 MHz. 
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Figure 5-3 Example output spectrum from an ideal DDS.5 
                                                                 
 
 
5  After Figure 2-1 of [8]. 
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 If DAC-related harmonic distortion had also been present as suggested in Figure 5-4, 
Figure 5-3 would have contained many more discrete tones. Consequently, the amount of 
harmonic distortion present can be inferred from these additional spectral tones as discussed later 
in Section 5.7. The most commonly used terminology to characterize DAC linearity performance 
is also discussed in that section.  
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Figure 5-4 Common DAC nonlinear transfer function characteristics6 

5.4 Systematic Frequency Planning for Design and DDS Usage 

Careful frequency planning is always required for high performance frequency synthesis and this 
statement is equally applicable to direct digital synthesis. DAC-related harmonic distortion is the 
primary bane for direct digital synthesis. Digital images come into play of course like those 
shown in Figure 5-3, but these are dictated by the Nyquist theorem and are simple to predict. In 
the case of harmonic distortion, however, even very high-order harmonic distortion terms can be 
heterodyned into any Nyquist zone by way of (5.6) thereby leading to unwanted in-band spurious 
products.  
 When the fundamental DDS output frequency fo is much less than fClock and the 
maximum-order harmonic is reasonably small, all of the output harmonics appear without any 
aliasing involved (i.e., n = 0 in (5.6)) as shown in Figure 5-5. As fo is increased, harmonics that 
would otherwise appear at frequencies higher than fClock / 2 in the absence of aliasing are instead 
aliased per (5.6) into the fundamental Nyquist region ( 0   fo   fClock  / 2 ) as shown in Figure 
5-6. (Note: Aside from the sin(x) / x shaping factor, these same spurious terms are also 
identically repeated in the kth Nyquist zone which is defined as [ (k – 1) fClock  / 2   fo  k fClock  / 2 
]. )  
                                                                 
 
 
6  After Figure 8 of [4]. 

Equation (5.6) is foundational for predicting the DDS output spurious frequencies. 
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 Harmonic distortion up to the Kth harmonic is fairly easy to measure in the laboratory 
for DDS output frequencies fo < fClock / ( 2K ) because they have the appearance shown in Figure 
5-5. For higher output frequencies, however, the harmonic distortion levels normally change as 
several second- and third-order imperfections become more significant over frequency. This 
consequently makes separate harmonic distortion assessment equally important for higher fo 
values where aliasing must be factored in.  

/ 2Clockfof 2 of 3 of 4 of 5 of

Quantization
Noise Floor

1m 

2m 

3m 

4m 

5m 

 
Figure 5-5 DDS harmonic distortion example where only the first five harmonics of the 
fundamental output frequency fo have an appreciable amplitude and where fo << fClock so that 
frequency aliasing is less apparent. In the context of (5.6), n  0. 
 

Clockf
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4 of
5 of

( , ) (0,1)n m  2 Clockf 3 Clockf

/ 2Clockf

6 of 7 of

(1, 2) ( 1,3) (2, 4) ( 2,5) (3, 6) ( 3,7)

 
Figure 5-6 As the DDS fundamental output frequency fo is increased, harmonics of fo are aliased 
per (5.6) into the fundamental Nyquist frequency range spanning from DC to fClock / 2. 
 
 A graphical means for frequency planning based upon (5.6) is presented in [5] and a 
portion of that discussion is reconstructed here. Based upon (5.6) and constraining the frequency 
region of interest to the fundamental Nyquist zone, the desired DDS output frequency is limited 
to 
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 0
2

Clock
o

f
f   (5.8) 

 
The second-harmonic of  fo  falling within the fundamental Nyquist zone is given by 
 

 2

2 for 0 / 4

2 for / 4 / 2
o o Clock

H
Clock o Clock o Clock

f f f
f

f f f f f

 
    

 (5.9) 

 
The third-harmonic of  fo  falling within the fundamental Nyquist zone is given by 
 

 3

3 for 0 / 6

3 for / 6 / 3

3 for / 3 / 2

o o Clock

H Clock o Clock o Clock

o Clock Clock o Clock

f f f

f f f f f f

f f f f f

 
   
   

 (5.10) 

 
These results are shown graphically in Figure 5-7. In general, the fundamental Nyquist zone will 
always contain harmonics of the desired DDS output frequency fo, and if their levels are higher 
than desired, the DDS must be followed with a suitable bandpass filter and or other suppression 
techniques pursued as discussed in this chapter. 

 

3rd
Harmonic

Hf
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/ 2Clockf

/ 2Clockf
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2nd
Harmonic

DesiredFundamental
of

 
Figure 5-7 Graphical representation of the 2nd and 3rd harmonic DDS output frequencies based 
upon (5.9) and (5.10) 
 
 In the case where the DDS is followed by a bandpass filter, the filter can be assumed to 
have a –ASTOP dB stopband and a bandwidth of BFIL = 2 a fClock symmetrically located with 
respect to the desired DDS output frequency fo. The bandpass filter will attenuate any spurious 
frequency falling more than a fClock Hertz away from fo  by at least ASTOP dB. Figure 5-7 can be 
augmented with the filter stopband limits as shown in Figure 5-8. As given in [5], the different x-
axis points in the figure are given by 
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1 1 1 1 1
, , , , ,

4 4 3 3 2Clock Clock Clock Clock Clock Clock

a a a a a
x a f f f f f f

       
 

 (5.11) 

 
The form for the adjacent terms is clearly given by ( 1 – a ) fClock / k  and ( 1 + a ) fClock / k. 
 Referring to Figure 5-8, frequency regions that are sufficiently void of 2nd and 3rd 
harmonic signals are given by three regions: [ x1, x2 ], [ x3, x4 ], [ x5, x6 ]. So long as the DAC 
does not exhibit appreciable harmonic distortion above 3rd order, these frequency regions can be 
used to create virtually spurious-free output signals. 

 

Hf

/ 2Clockf

/ 2Clockf

of

2 Clocka f

1x 2x 3x 4x 5x 6x

 
Figure 5-8 Augmented diagram with tracking stopband region shown. The x-axis values are 
given by (5.11). 
 
 In the special case where 3rd-order distortion is negligible and only 2nd-order harmonic 
distortion is significant, the two clean frequency regions are given by [ x1, x4 ] and [ x5,  fClock / 2]. 
Similarly, if the 2nd-order distortion is negligible and only 3rd-harmonic distortion is significant, 
the two clean frequency regions are given by [ a fClock / 2, x2 ] and [ x3, x6 ].  
 These concepts can be extended to higher-order harmonic distortion cases of course, but 
not without substantially greater complexity. In the case where the DDS is followed with an 
arbitrarily small bandwidth filter compared to fClock, there are still frequencies at which harmonic 
distortion will be potentially problematic ( e.g., fo = fClock / k for k an arbitrary integer ). 
 

 
 
 In general, harmonic distortion is best avoided using the methodology described in this 
section or in Section 5.9. Otherwise, appreciable harmonic distortion is very difficult to combat 
unless a substantial amount ( e.g., ¼ of full-scale ) of dithering is used. Normally, this dithering 
is applied outside the usage-bandwidth and subsequently suppressed with additional filtering. 
This method and others are discussed later in Section 5.10.  

Second- and third-order output spurious frequencies can be avoided by operating in the three 
clean regions shown in Figure 5-8 and denoted by [ x1, x2 ], [ x3, x4 ], [ x5, x6 ]. 
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5.5 DDS Output Spectrum 

The previous section dealt with a frequency planning approach that makes it possible to avoid 
2nd- and 3rd-order harmonic distortion related spurious frequencies at the DDS output. Other key 
high-level factors that directly affect the output DDS spectrum are discussed in this section. 
 Characterization of the DDS output spectrum falls into two different camps depending 
upon whether noise-shaping techniques are used or not.  No noise-shaping is considered for the 
discussions in this section. Noise shaping methods are addressed separately in Section 5.11. 

5.5.1 DDS Input Clock-Jitter Considerations 

Input clock spectral imperfections ( i.e., jitter ) will directly affect the spectrum at the DDS 
output. Two separate cases corresponding to deterministic jitter and random jitter are considered 
here. It so happens that the results in this section apply whether noise-shaping techniques are 
used in the DDS or not. 

5.5.1.1 Deterministic Clock Jitter (Sinusoidal PM)  

The DDS input clock can be represented in this case by 
 

    sin sinClock Clock mv t t t        (5.12) 

 
where the clock input radian frequency is given by  Clock, the associated peak phase deviation is 
given by   radians, and the radian modulation frequency is represented by m ( <<  Clock ). 
The phase modulation causes the otherwise perfect zero-crossings of the clock to be jittered in 
time. To facilitate this discussion, denote the kth zero-crossing time as 
 

 k Clock kt k T T   (5.13) 

 
where the nominal DDS clock frequency is given by fClock = 1 / TClock. From (5.12), the zero-
crossing times must satisfy 
 

     sin 2    for 0Clock Clock k m Clock kk T T k T T k k              (5.14) 

 
In the case of no clock-jitter, clearly Clock k TClock = 2k  and this observation can be used to 
transform (5.14) into 
 

  sin 0Clock k m Clock kT k T T           (5.15) 
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In general, |m Tk| << 1 and using the small-angle approximations7 for sin( ) and cos( ) in (5.15) 
produces the end-result 

  sink m Clock
Clock

T k T
 




   (5.16) 

 
 The primary reason for expressing the zero-crossing variations in the time domain via 
(5.16) is to show that time is never scaled in the real world. Consequently, if the zero-crossings 
of the DDS input clock are being moved by Tk, the same must be true for zero-crossings at the 
DDS output. Ideally, the DDS output sinusoid is given by 
 

    sin 2
Clock

DDS o t kT
v t f t


  (5.17) 

 
but in fact, t must be replaced by tk = kTClock + Tk. This modifies the ideal DDS output 
represented by (5.17) to 
 

 
   

 
sin 2

sin 2

DDS k o Clock k

o Clock k

v t f k T T

f k T

 

 

   
 

 (5.18) 

 
where k represents the phase modulation on the DDS output sine wave given by 
 

  sino
k m Clock

Clock

k T
  


   (5.19) 

 
Note that (5.19) has the same form as the original phase-modulated clock in (5.12). Therefore, if 
the DDS input clock at frequency fo has discrete PM spurs with a frequency-offset of  fm and dBc 
level of LClockSpurs, these spurs are manifested at the DDS output as PM spurs on the desired 
sinusoidal output with the same offset frequency fm but with the modified dBc level given by 
 

 1020 log   dBco
DDS ClockSpurs

Clock

f
L L

f

 
   

 
 (5.20) 

 
This result is shown graphically in Figure 5-9.  
 In general, the DDS acts like a frequency divider with a divide-ratio of NDDS = fo / fClock. 
In this respect, the result given by (5.20) follows the same well-known spurious improvement 
delivered by a divider, namely 20 log10( N ). 

                                                                 
 
 
7  This approximation is equivalent to ignoring the higher-order terms in the Bessel series expansion for 

(5.12) which is      cos Clock mn
n

v t J n t  




      from equation (3.4) in [6] and the Jn 

represents an nth-order Bessel function. 
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Figure 5-9 Input DDS clock PM spurs are translated directly to the DDS output as PM spurs 

5.5.1.2 Random Clock Jitter 

The effect of random clock jitter on DAC performance with random data is treated in Section 5.9 
of [6]. The analysis for a DAC sine wave output begins in much the same way except the data 
sequence is a deterministic sine wave rather than random data. An idealized DAC output is 
shown in Figure 5-10 where grossly exaggerated clock-jittered boundaries are also shown. The 
early or late DAC output transition points result in error pulses compared to the ideal output 
waveform like those shown in the lower portion of Figure 5-10. 
 

Ideal DAC
Clock Times

2kT  1kT  kT

DAC Output
with No Jitter

Continuous-Time
Sine Wave

 3 Clockk T  2 Clockk T  1 Clockk T Clockk T

DAC Error
Caused by Jitter

 
Figure 5-10 Idealized DAC output with time-jittered clock-times 
 
 The time-jittered DAC output can be represented by 
 

    1,
M

M k Clock k Clock Clock k
k M

V t d rect t k T T t k T T T  


       (5.21) 

 
where rect( t1, t2 ) = 1 for t1  t < t2 but otherwise zero, and the dk represent the ideal DAC 
sinusoidal sample values. For the sinusoidal output, the dk are given by 
 

    sin 2k o Clockd f k T      (5.22) 
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Figure 5-11 Error pulses corresponding to Figure 5-10  
 
The error pulses shown in Figure 5-11 have extremely small widths in time (i.e., | Tk | << TClock) 
for any system of genuine interest and they can be modeled as a periodic sequence of ideal delta-
functions with impulse areas ( which must be scaled by TClock ) given by 
 

  1
k

k k k
Clock

T
u d d

T


    (5.23) 

 
For the sinusoidal case (5.22), the difference can be expressed as 
 

    1 2sin cos 2k k o Clock o Clock o Clockd d f T f kT f T      (5.24) 

 
If a time domain simulation for computing the Tk quantities is available, computing the 
associated power spectral density of the noise amounts to computing the squared-magnitude of 
the resultant fast Fourier transform of (5.23). 
 
A More Careful Look 
 
A more in-depth look at the mechanics behind (5.23) can provide greater insight into this rather 
simple result. The autocorrelation function of the time jitter or associated clock phase noise is 
assumed to be known for this discussion. The two autocorrelation functions are related as 
 

    
2

2
Clock

T

T
R R  


   
 

 (5.25) 

 
When the jitter quantities are wide-sense stationary as assumed here, the autocorrelation 
functions are related to their respective power spectral densities through a Fourier transform.8 
 The power spectral density for a wide-sense stationary continuous-time random process 
is given by9 

       21
lim 2

2 1 MM
Clock

P f L j f
M T




      
E  (5.26) 

                                                                 
 
 
8  A basic property for wide-sense stationary processes as discussed in Section 4A.1 of [6]. 
9  Equation (2.94) from [6]. 
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where E denotes statistical expectation, and LM represents the Fourier transform of the error 
signal over a time interval of  M TClock. It is important to note this definition produces a two-
sided spectral result for P( f ). 
 The Laplace transform for the error pulse-sequence shown in the lower portion of 
Figure 5-10 can be written as 
 

    1

1 k

Clock

s TM
skT

k k
k M

e
L s d d e

s








    (5.27) 

 
As noted earlier, | Tk / TClock | << 1 makes it possible to approximate the fractional portion of 
(5.27) by 
 

 
 1 11 ks T

k
k

s Te
T

s s

 


  
   (5.28) 

 
(This approximation was the key enabling approximation used in obtaining (5.23).) Not 
surprisingly, (5.27) can be closely approximated by 
 

    1
Clock

M
skT

k k k
k M

L s d d T e 




      (5.29) 

 
where the bracketed quantity will be subsequently referred to as vk. (The vk lack a factor of 
1/TClock compared to the uk in (5.23) ) The squared-magnitude of (5.29) is then 
 

    2
Clock

M M
s k l T

k l
k M l M

L s v v e 

 

    (5.30) 

 
The double-sum is most easily handled by using contours along which k – l is a constant as 
shown in Figure 5-12. Invoking this reasoning and using the wide-sense stationarity of the vk 
samples, the statistical expectation in (5.26) can be brought through the double-summation in 
(5.30) thereby resulting in10  
 

       
2

1

1
lim 0 2 1 cos 2

2 1

M

v v ClockM
nClock

n
P f R R n f nT

T M





        
  (5.31) 

 
which is again a two-sided power spectral density. The Rv( n ) quantity is the autocorrelation 
function of the vk samples. In this result, the sin( x ) / x factor which usually occurs with DAC 
outputs is absent because the pulse-widths in Figure 5-11 are so small compared to TClock.  
 
                                                                 
 
 

10  Interestingly, when R ( n ) is known exactly, retaining the 1
2 1

n

M



 factor can lead to a small 

scaling inaccuracy even near the carrier unless M is extremely large. In the associated MATLAB code 
script u16470_time_jittered_DAC_clock.m, this term is set to unity for this reason. 
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k

l 0k l 

1k l 

 
Figure 5-12 Diagram showing that the number of indices there k – l  =  n is given by 2M + 1 – 
|n|. This diagram corresponds to M = 3. 
 
 The autocorrelation function Rv( n ) is defined as 
 

 

   
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E
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4sin cos 2

2
E

1
cos 2

2

v k k n

o Clock o Clock

o Clock o Clock k k n

R n v v

f T f k T

f k n T f T T T

 

   







             
            

 (5.32) 

 
After bringing the expectation operator inside the braces, applying some basic trigonometry, and 
making use of (5.25), 
 

        
2

sin
2 cos 2

2
Clock o Clock

v o Clock

T f T
R n f T R n





 

  
 

 (5.33) 

 
 In summary then, when R ( n ) is known, the power spectral density of the clock jitter 
related DAC output noise can be computed directly from (5.31). Since the phase noise (and clock 
jitter) random processes are assumed to be wide-sense stationary, R ( n ) can be obtained from 
the associated power spectral density of the clock phase noise using a Fourier transform. 
 
An Example Calculation 
 
The Lorentzian power spectral density frequently occurs for the phase noise of a DAC clock11 
and it is given by 

                                                                 
 
 
11  See Section 5.2 of [6]. 
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   2

1

o

c

L
f

f
f


 

  
 

L  (5.34) 

 
The total integrated phase noise for this two-sided phase noise spectrum is 
 

 2 2
2 rad

1

o
o c

c

L
df L f

f
f

 




 
 

  
 

  (5.35) 

 
The corresponding autocorrelation function is given by 
 

    exp 2o c cR L f f       (5.36) 

 
This autocorrelation function can be used for R in (5.33) and the power spectral density of the 
DAC output noise due to clock jitter computed using (5.31).   
 The two cases considered here have the following parameter values: 
 

cf  200 kHz 

 0R  Corresponding to 5 rms integrated phase noise 

Clockf  40 MHz 

of  Two cases, 4.18 MHz and 14.18 MHz 

 
The computed output spectrums are shown in Figure 5-13 and Figure 5-14 where the noise 
spectrum clearly degrades as the DDS output frequency is increased. The dashed curve in both 
figures is present for strictly comparative purposes and is given by 
 

  10 10210 log 20log

1

o o
Comp

Clocko

c

L f dBc
f

f Hzf f

f

 
 

               

L  (5.37) 

 
The output noise spectra always tend to flatten out near dc and near fClock / 2 due to higher-order 
noise aliasing products as shown in the figures. Since the noise sidebands are not symmetric, the 
output noise contains both AM and PM noise contributions. In general, the computed results 
given by (5.31) match the expected results given by (5.37) in Figure 5-13 and Figure 5-14 quite 
well until fairly low noise levels are reached. In a real world application, the total integrated 
clock phase noise would probably be kept considerably smaller than in these two examples 
thereby improving the output noise sidebands proportionately. 
 

31 May 2011 James A Crawford www.am1.us



5-16                    Advanced Phase-Lock Applications 

 

 
Figure 5-13 Calculated12 sinusoidal-output 
DDS phase noise spectrum with fo = 4.18 MHz 

 
Figure 5-14 Calculated13 sinusoidal-output 
DDS phase noise spectrum with fo = 14.18 
MHz 

5.5.2 Noise and Spurious Performance Related to Phase Truncation 

   
The high gate-count achievable in modern digital CMOS devices has made it possible to apply 
brute-force techniques to largely quell the phase truncation problem in modern systems. Phase 
accumulators using precisions of 24-bits or more are fairly typical and 10 to 14 bits are 
frequently retained for the   to sin(  ) conversion. Phase truncation related spurs are almost 
always present unless dithering or noise-shaping methods are used, however. It is therefore 
necessary to understand the level at which these may occur. 
 In the context of Figure 5-15, the DAC output sample sequence may be written as 
 

   sin 2 2
2

B r
nN B

F n
s n  

       
 (5.38) 

 
where B is the number of phase accumulator bits truncated at the input to the sin(  ) calculation 
( i.e., B = N – W ), Fr is the (integer) frequency control word given by 

 

 2No
r

Clock

f
F

f

 
  
 

 (5.39) 

                                                                 
 
 
12  MATLAB script u16470_time_jittered_DAC_clock.m. 
13  MATLAB script u16470_time_jittered_DAC_clock.m. 
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Spectrum degradation due to phase-truncation related spurious outputs was a serious issue 
in early DDS designs due to finite-precision constraints. Deep sub-micron gate densities have 
largely made the finite-precision issue a thing of the past except possibly in ultra-high-speed 
DDS situations or when exceptionally low spurious requirements are in play. Algorithm 
advancements using dithering (Section 5.10) and noise-shaping techniques (Section 5.11) 
make it possible to all but eliminate these spurs even when relatively low-precision DACs are 
used. If these spurs are not properly attended to, however, they will always be present in the 
DDS output spectrum thereby making a mastery of this topic very worthwhile.  
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and n represents the additional noise due to the limited D-bit quantization of the output sine 
quantity. The notation  x  denotes retaining only the integer portion of  x. The DAC is assumed 
to be ideal without any quantization noise for this present discussion ( k = 0 ). 
 The worst-case spur level is given by [7, 9] 
 

 
 6.02 3.92 dBc

6.02 3.92 dBc

wcpL B N

W

  

  
 (5.40) 

 
None of the results discussed in this section include the sin( x ) / x  roll-off of the output 
frequency terms due to the sample-and-hold inherently present within the DAC function, 
however, so additional allowances must be made in order to reflect this factor into what would be 
measured in the laboratory. 

Clockf





 
   Calculate

sin 

Clockf

of

DDS
 

Figure 5-15 Bit-widths in the general sinusoidal DDS. The number of bits truncated between the 
phase accumulator ( N bits ) and the phase argument presented to the sin(  ) calculation ( W 
bits ) is represented by B in the text. 
 

The level of the maximum observed spur can be up to 3.92 dB lower than that given by 
(5.40)  depending upon the specific output frequency being synthesized. The maximum observed 
spur level14 for a specific output frequency is rigorously given by [7, 9] 
 

     
 10

gcd , 2 2
6.02 20log dBc

sin gcd , 2 2

B B
r

Spur r B B
r

F
L F B N

F









      
    

 (5.41) 

 
where Fr = ( fo / fClock ) 2

N . The maximum value for LSpur occurs when the greatest common 
divisor (gcd) between Fr and 2B is 2B–1 thereby resulting in (5.40). The 20log10( ) portion of 
(5.41) is shown in Figure 5-16 to illustrate that the additional spur-level increase represented by 
this term occurs very infrequently for B > 5. 

Two example output spectrums are shown in Figure 5-17 and Figure 5-18. In both 
cases,  fClock = 100 MHz, N  = 18, and W = 10 are used. The first spectrum corresponds to Fr = 
7340 and the second spectrum corresponds to Fr = 45298. As exhibited here, the spectral shape 
of the spurious patterns can vary dramatically, and the spur levels dwarf the level of any noise-
like terms created by the phase truncation. Phase truncation almost always leads to a discrete line 
spectrum as discussed later in Section 5.5.2.1 because the truncation errors are highly correlated. 

                                                                 
 
 
14  Some have taken issue with this formula for small values of B ( e.g., 1 ), notably [10] .  
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Figure 5-16 The additional spur factor corresponding to the 20log10( ) value in (5.41). For B > 4, 
a value much greater than a fraction of one dB is rare. 

 

 
Figure 5-17 Sinusoidal DDS output spectrum15 ( not including the DAC sin( x ) / x ) for Fr = 
7340, 18-bit phase accumulator, W = 10, floating-point precision for the sin(  ) values, fClock = 
100 MHz. The theoretical worst-case maximum spur level is computed using (5.40) whereas the 
case-specific maximum spur level is computed using (5.41). 

 
 

                                                                 
 
 
15  MATLAB script u16484_nco_phase_truncation.m. 
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Figure 5-18 Case identical to Figure 5-17 except Fr = 45298 

5.5.2.1 Phase Truncation Spectrum Details 

The complete spectrum associated with phase truncation was first solved by Nicholas and 
Samueli [9, 11], but has since been revisited by numerous researchers offering additional insights 
and advancements [12, 13, 14, 15].  The solution given by Nicholas and Samueli is provided 
below. 
 

 Divide the frequency range from 0 to fClock / 2 into a sequence of 2N–1 / ( Fr, 2
N ) evenly 

spaced potential spur locations, each sequentially numbered. The sequential frequency 
number of a spur location is related to the actual analog spur frequency, fSpur, by  

 

  
2

,2

N
Spur

n N
Clock r

f
F

f F
  (5.42) 

 
In this context, N is the number of bits in the phase accumulator and ( a, b ) denotes the 
greatest common divisor of a and b. 
 

 Find the spur number, K , from the frequency number, Fn, using the following rules: 
a) If both Fn –  and  – Fn –  are not divisible by 2, then the magnitude of the 

spur at Fn is zero. 
b) If 2 divides Fn – , then 
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  
12

, 2

B

B
rF



   (5.44) 

 
and B is the number of phase-bits truncated. 

c) Otherwise, 2 must divide – Fn –  and 
 

 1

22
n
N B

F
K 




 
   (5.45) 

 
In these last equations, the large brackets < a >b represents taking the integer remainder 
of a modulo b ( e.g., < 17 >4 = 1 ).  
 

 The magnitude of the spurious noise line at Fn is given by 
 

 
2

cosec
2 2

B N

K

K 
      

 (5.46) 

 
As noted in [9], the number of spurs and their magnitudes only depend on Fr through the 

greatest common divisor quantity ( Fr, 2
B ). Values of Fr having the same value for ( Fr, 2

B ) also 
have the same number of spurs and same spur amplitudes. Perhaps most interesting of all, the 
spur frequency locations are simple rearrangements of one another.  
 

5.5.2.2 Spurious Due to Phase Quantization Excluding Phase Truncation 

Finite precision within a traditional DDS always leads to additional periodicity factors resulting 
in unwanted spurious products being created. The modulo-P number theoretic perspective 
developed here makes it possible to fully characterize the spurious performance of an otherwise 
ideal DDS with very minimal analysis compared to previous methods. These same computational 
techniques can be extended to address several DAC-related imperfections as well. 

The preceding results, while computationally valuable, fail to convey much insight into 
what is happening under the banner of phase truncation. This can be remedied by building upon 
the statements in the previous paragraph in the context of [13] which is an overview of the larger 
work in [16].  
 In the sinusoidal DDS case represented by (5.38), the phase argument sequence is given 
by 

   2 2
2

B r
N B

F n
n  

    
 (5.47) 

 
For the moment, assume there is no phase truncation taking place ( B = 0 and W = N ) and 
consider two frequency control words Fr1 = 0001101 and Fr2 = 0000001. It is important to note 
that both frequency words have ones in their LSB bit position. In this present context, both words 
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have N = 7 and a DDS output period P = 2N = 128 samples.16 The contents of the numerical 
phase accumulator in Figure 5-15 for these two different frequency cases are given by 
 

 
 
 

1 1

2 2

r P

r P

s n nF

s n nF




 (5.48) 

 
where  P denotes modulo base P. By selecting Fr2 equal to the minimum nonzero frequency 
word possible, every possible phase accumulator state is visited in sequential order before the 
entire sequence is repeated. The two sample sequences are plotted in Figure 5-19 and appear to 
be quite different, along with their respective DFT spectrums in Figure 5-20. It turns out, 
however, that the two sequences can be expressed in terms of each other by a simple index 
rearrangement as 

 
   
   

1 2 1

2 1

r P

P

s n s n F

s n s n J




 (5.49) 

 
where J is the smallest integer satisfying the equation 
 

 1 1r P
F J   (5.50) 

 
Two relationships used later in proving these results for integer values a, b, and c are 
 

 
c c c c

a b a b  (5.51) 

 
Figure 5-19 Accumulator value versus sample index17 for Fr1 = 13 and Fr2 = 1 ( N  = 7 ) 
 
                                                                 
 
 
16  The smallest nonzero LSB determines the repetition period of the DDS output. 
17  MATLAB script u16537_torosyan_dds.m. 
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Figure 5-20 DFT of the sample sequences18 s1 and s2 shown in Figure 5-19 and given by (5.48) 
 

 
22

2 2 N dN

d da a   (5.52) 

 
 Several of the J-values for the N = 7 case are listed in Table 5-2. A sample index 
reassignment example for the case Fr1 = 3 is provided in Table 5-3. 
 
Table 5-2 J-Values Satisfying (5.50) for P = 2N = 128 
 

Fr1 J 
3 43 
5 77 
7 55 
9 57 

11 35 
13 69 
15 111 
17 113 
19 27 

 
 
Table 5-3 Example Sample Index Rearrangement for Fr1 = 3 ( J = 43, N = 7 ) 

n  1 2 3 4 5 6 7 8 

P
n J

 
 43 86 1 44 87 2 45 88 

 

                                                                 
 
 
18  Ibid. Only odd values of Fr1 are used in order to keep the LSB a one. 
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 The rearrangement relationship given by (5.49) has been recognized by many 
researchers going back to the original works in [9] and [11], but the proof of this relationship has 
typically been rather involved. The explanation that follows is based upon basic number theory. 
 Let the two sample sequences in (5.48) be denoted by 
 

    1 , 2 , 3 ,...,
P P P P

S n MA MA MA RMA  (5.53) 

    2 , 2 ,...,
P P P

S n A A RA  (5.54) 

 
where M = Fr1 / Fr2,  A = 2u = Fr2, P = 2N, and R = 2(N – u). The frequency control word situation is 
shown more clearly in Figure 5-21. In this context, M must always be an integer.  
 

16 BitsN 

1 0 0 0 0 00 0 0 0 00 0 0 0 0

15 0Bit No

2u

2rF

1 0 0 0 0 01x2x3x4x5x6x7x8x9x10x
1rF

 
 

Figure 5-21 Frequency control word for the more general case. Fr2 always has a single binary-
one in the uth bit position as does Fr2, but at least one of the xk values in Fr1 must also be a binary-
one. Each Fr2 case ( one for each value of u ) serves as the basis case for all of the respective Fr2 
values having the same right-most nonzero LSB set. 
 
Focusing first on (5.54),  the value of the nth term in the s2 sequence is given by 
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 (5.55) 

 
where T = 2( N – u ). In the case of (5.53), the nth term of the s1 sequence is given by 
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1

2

2

P

u
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u
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n F
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 (5.56) 

 
Using these results, transitive relationships can be written as 
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thereby making it possible to conclude that 
 

    1 2 1r T
s n s n F  (5.58) 

 
Similarly, it is true that 

  2 2u

T
s n n  (5.59) 

from (5.55), and  
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 (5.60) 

 

provided that 1 1r T
J F  . When J satisfies this condition, s2 and s1 are also related by 

    2 1 T
s n s n J  (5.61) 

 
The relationships given by (5.58) and (5.61) provide the means to rearrange one output sequence 
in terms of the other. This is especially helpful because the s2 sequences for different values of u 
can consequently be viewed as the basis waveforms for DDS operation from which all of the 
other DDS quantities can be derived.  
 Equations (5.58) and (5.61) are identical with the earlier results given in (5.49) except 
that they also apply for non-zero values of u. The major value in recognizing the sequence 
rearrangement property between s1 and s2 is that the same is true of their respective discrete 
Fourier transforms represented by S1 and S2. Consequently, the DFT of every possible frequency 
control word can be found by computing the DFTs for the N different basis sequences of s2 ( for 
u  [0, …, N – 1] ) in (5.54) corresponding to the different values of u in Figure 5-21, and 
applying the proper frequency-bin rearrangements to these DFT results.  
 It may be troubling that the discussions thus far have focused entirely on the phase 
sequence  ( n ) rather than on the DDS output sequence sin[ ( n ) ], but this is a minor issue 
which will be dealt with shortly.  

5.5.2.3 Sequence Rearrangement in the Frequency Domain 

Just as the different time sequences s1 and s2 can be related to one another through the index 
rearrangements (5.58) and (5.61), similar relationships exist between their respective DFTs as 
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   
   

1 2

2 1 1

T

r T

S k S k J

S k S k F




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This means that the same rearrangements used in (5.49) for the time sequences apply to the 
frequency domain as well. The proof for this statement is based upon the symmetry inherent 
within the DFT. The DFT for each time sequence can be written as 
 

 
1 1
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S s

S s
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W

W
 (5.63) 

 
where W( k, n ) = exp( – j 2 k n / T ). If the nth column of W is replaced with the < n Fr1 >T 
column to create a new matrix H, each element is given by 
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 (5.64) 

 
Since the integer portion of the  T quantity in (5.64) contributes nothing to the final result, 
(5.64) can be rewritten as 
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 (5.65) 

which is the same value for the ( k, n ) element that would have been obtained had a row 
rearrangement of W been done instead. Similarly, replacing the nth column of H with the < n J >T  
column or replacing the kth row of H with the < k J >T row reproduces the original DFT matrix 
W.  
 Based upon this result and starting with the lower equation in (5.63), rearrangement of 
the sequence elements in s2 by Fr1 along with a column rearrangement of W by Fr1 ( thereby 
creating H )  leaves the left-hand side of the equation unchanged as 
 

  
2 2

2 1

1

r T

S s

s k F

s





W

= H

H

 (5.66) 

 
Similarly starting with the upper equation in (5.63), rearrangement of the sequence elements in s1 
by J along with a column rearrangement of W by J ( thereby creating H )  leaves the left-hand 
side of the equation unchanged as 
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  
1 1
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S s
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

W

H

H

 (5.67) 

 In conclusion, the set of spur magnitudes created by Fr1 is identical to the set created by 
Fr2 except for the spurs rearrangement in the frequency domain. It is therefore possible to predict 
the frequency domain behavior for every possible Fr1 value using only the N spectrum results for 
the Fr2 basis values along with the appropriate frequency bin rearrangements.   

5.5.2.4 Including Phase Truncation 

The preceding results for the non-truncation case can also be applied directly when phase 
truncation is present. When phase truncation is present, the B = N – W  LSBs in Figure 5-21 are 
not used to compute the sin(   ) value as shown in Figure 5-15. For the u = 0 frequency control 
word case, Fr2 results in a ramp function that has each step repeated 2B times as shown in Figure 
5-22. The analysis is simplified if the LSB of Fr1 is always unity because only one basis value for 
Fr2 is needed ( u = 0 ) to compute the DDS behavior for all possible cases of Fr1. This assumption 
is made throughout the following discussion.  

Clockf
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Figure 5-22 Phase truncation causes the phase argument presented to the sin(   ) calculation to 
be truncated in value and repeated for 2B steps in a row for the Fr2 case with u = 0 
 
The DFT of the bit-truncated s2 sample sequence can be written for the nontrivial case ( q > 1 ) 
as 
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S k e e s qn e 


  



       (5.68) 

 
where q = 2B, P = 2N, and T = 2W for k = 0, 1, …, 2N – 1. The prime denotes that this is the DFT 
for the bit-quantized s2 sequence. This result may be further simplified to 
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  (5.69) 

 
The DFT for all of the bit-truncated s1 sequences directly follows by using the frequency bin 
rearrangement which was described earlier in connection with (5.67) and applying it to (5.69). 
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5.5.2.5 Including the Ideal Mapping   to sin(   ) 

Thus far, all of the attention has been given to the behavior of the phase argument presented to 
the  -to-sin(   ) computation shown in Figure 5-22. In actuality, most of the attention has been 
given to the indices used with the time and frequency domain sequences rather than the actual 
phase values. Since the   to sin(   ) mapping is a one-to-one mapping, it is a simple matter to 
include this functionality so that the DFT of the basic s2 sequence at the output of the mapping 
function is given by 
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k q qnP
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  
                       

  (5.70) 

 
In the ideal case, g(   ) = sin(   ), but this formulation makes it easy to include nonlinear DAC 
distortions of any kind including quantization so long as g is a straight-forward mapping. 
Nonlinear DAC behavior is discussed separately in Section 5.7. 

5.5.2.6 Phase Truncation Examples 

Example I: N = 8, W = 3, Fr1 = 3 
 
In this example, W = 3 and five bits of the phase argument are truncated. The small frequency 
control word has been purposely chosen in order to make the different sequences easier to 
identify. The phase accumulator output and truncated phase accumulator output versus time 
index are shown in Figure 5-23 where the expected stair-step behavior due to truncation is 
clearly apparent. 

 
Figure 5-23 Phase argument index versus time index19 for N = 8, B = 5, Fr1 = 3. Stair-step 
behavior due to phase truncation is clearly apparent.  
                                                                 
 
 
19  MATLAB script u16538_torosyan_spurs.m. 
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Figure 5-24 DDS output spectrum after the phase   has been perfectly converted to sin( ). The 
sine-weighting strongly suppresses many of the spurs that would otherwise be present. The 
desired signal is present in bin #3 with its alias in bin #253. The worst-case undesired spur level 
is at about –16.9 dBc which is slightly less than the worst-case bound of –14.1 dBc predicted by 
(5.40). 
 
 The value of J corresponding to this choice for Fr1 is J = 171. The output spectrum for 
the sinusoidal DDS case is shown in Figure 5-24. The sinusoidal shaping by g( ) in (5.70) 
suppresses many of the spur levels but the significant phase truncation present in this example 
still produces significant spurious terms as shown. 
 
Example II: N = 12, W = 8, Fr1 = 723 
 
The spurious spectrum for this DDS case is shown in Figure 5-25. There are four distinct spurs 
that are noticeably higher than the others but a substantial number remain at about –60 dBc. 
These spur levels are identical to those of the basis frequency case Fr2 = 1 shown in Figure 5-26. 

 
Figure 5-25 DDS output spectrum showing the worst-case spur level at about –48 dBc which is 
again consistent with the bound of –44.1 dBc predicted by (5.40). N = 12, B = 4, Fr1 = 723. 
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Figure 5-26 Phase truncation related spurs associated with Example II for the basis Fr2 ( = 
000000000001 ) case. N = 12, B = 4, Fr1 = 1. 

5.5.2.7 Phase Truncation Summary 

The spurious performance related to phase truncation has been summarized in terms of a simple 
index-mapping method applied to a single basis spectrum corresponding to Fr1 = 000…0001 in 
this chapter. Only one basis spectrum is needed to compute the spectrum for all other DDS 
frequency word values so long as the LSB of every frequency word is always unity. 
 A good starting point for any DDS design is to simply compute the phase-related spur 
levels associated with the Fr2 frequency word case. The frequency locations of these spurs move 
around a lot with other frequency word choices, but the spur levels do not. It is a simple matter to 
compute how different spurs move in the DDS output frequency spectrum with different 
frequency words applied given the index-mapping relationships presented in this chapter. 

5.5.3 DAC Noise and Spurious Performance Related to DAC Quantization 

The DAC shown in Figure 5-15 is limited to D-bits of resolution and this limitation leads to DDS 
output noise and spurious tones being created. Unlike the phase truncation spurs just discussed 
that always lead to fairly distinct spurious tones, however, DAC quantization usually creates 
more random spurious tones in comparison.  
 The quantization noise that arises with even an ideal D-bit DAC is not necessarily 
uncorrelated as discussed in Section 8.3.3 of [6]. If the quantization errors can be viewed as a 
wide-sense stationary random process represented by v( n ) having an autocorrelation function 
given by Rv ( k ), however, it has a corresponding power spectral density given by [6] 
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   (5.71) 

  
when the time samples are uniformly TClock seconds apart. Large values of | Rv ( k ) | 
automatically imply the presence of strong spurious tones in the output spectrum. An obvious 
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question to consider is whether the occurrence of these spurs can be predicted in a manner 
similar to that obtained for the phase truncation spurs. 
 Based upon the material presented earlier in Section 5.5.2.5, DAC quantization still 
results in a one-to-one mapping between   and g(  ), and the resultant spurs consequently obey 
the same index-rearrangement rules developed earlier in Sections 5.5.2.3 and 5.5.2.4. DAC 
quantization related spurs behave quite disjointly from their phase-related spurious counterpart 
making their independent assessment relatively straight forward. The following example 
illustrates this behavior. 
 Consider a DDS case using a 12-bit phase accumulator ( N = 12 ), truncated   to sin(  
) lookup table using 8-bits ( W = 8 ), and an output DAC having 8 or 16-bit precision ( D ). The 
resultant spur levels are shown in Figure 5-27 for the 16-bit DAC case. When the DAC precision 
is reduced to 8-bits, many more discrete spurs appear as shown in Figure 5-28 but the phase 
truncation spur levels and positions remain unchanged. 
 Since the same index mapping relationships developed earlier in (5.49) and (5.62) still 
apply with DAC-related quantization noise, the worst-case spur level for all frequency control 
words having the same minimum LSB position set can be found by considering only one control 
word as done in Section 5.5.2.2 for the phase truncation spurs.  To pursue this statement further, 
the worst-case spur levels can be computed for all W-bit phase truncation cases that have D-bit 
sin(   ) quantization (corresponding to a DAC with D-bits of precision) as shown in Figure 5-22. 
In each case, the frequency control word has the LSB set to unity. The results are shown in 
Figure 5-29 with W as the independent variable and in Figure 5-30 where D is the independent 
variable. The horizontal lines break sharply from the sloped curve because the phase truncation 
and DAC quantization spurs are essentially independent of one another in amplitude and position 
in frequency as already mentioned. 
 The worst-case spur level due to DAC quantization alone can be found by considering 
the endpoints with W = 17 in Figure 5-29. A linear regression of these points shows that the 
DAC-related worst-case spur level is given approximately by  
 

 7.63 6.65 dBcwcqrL D    (5.72) 

 
All of the preceding results apply when rounding is used immediately ahead of the DAC. If the 
DAC values are simply truncated to D-bits rather than rounded, the output spurious performance 
can be slightly better or worse than the rounded case depending upon the specific W and D value 
used. The linear regression equivalent to (5.72) for the DAC truncated-input case is 
 

 7.83 4.54 dBcwcqtL D    (5.73) 

 
and the associated worst-case spurious results are shown in Figure 5-31 and Figure 5-32.  
 It is important to remember that none of these results include the sin( x ) / x frequency-
domain shaping that occurs due to the zero-order sample-and-hold inherent within the DAC. This 
function should always be included when comparing spurious levels to the level of the desired 
sine wave component. 
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Figure 5-27 DDS output spectrum for N = 12, W = 8, and D = 16.20 The only spurs visible are 
phase truncation related spurs and the worst-case spur level is about –48 dBc as predicted by 
(5.40). 
 

 
Figure 5-28 DDS output spectrum for N = 12, W = 8, and D = 6.21 Many more discrete spurs 
have appeared due to the smaller number of DAC bits used, but the magnitude and position of 
the phase truncation related spurs remain unchanged compared to Figure 5-27. 

                                                                 
 
 
20  From calling u17612_dac_spur_check( 3, 12, 4, 16 ). 
21  From calling u17612_dac_spur_check( 3, 12, 4, 8 ). 
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Figure 5-29 Worst-case DDS spur level versus number of phase bits W and number of DAC bits 
D. 22 (DAC input values rounded to D-bits.) 
 

 
Figure 5-30 Worst-case DDS spur level versus number of phase bits W and number of DAC bits 
D (as in Figure 5-29) but with D as the independent variable. 23 (DAC input values rounded to D-
bits.) 
 

                                                                 
 
 
22  From u16539_dac_quantization_errors.m. 
23  From u16539_dac_quantization_errors.m. 
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Figure 5-31 Worst-case DDS spur level versus number of phase bits W and number of DAC bits 
D. 24 (DAC input values truncated to D-bits.) 
 

 
Figure 5-32 Worst-case DDS spur level versus number of phase bits W and number of DAC bits 
D (as in Figure 5-31) but with D as the independent variable. 25 (DAC input values truncated to 
D-bits.) 

                                                                 
 
 
24  From u16539_dac_quantization_errors.m. 
25  From u16539_dac_quantization_errors.m. 
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5.5.4 Output SNR Due to DAC Quantization 

A full-scale sine wave from an ideal D-bit DAC has numerical values that span from 0 to 2D – 1. 
This corresponds to a sine wave peak value of approximately  2D–1 and a corresponding power 
level (voltage squared) of PSig = 22D–3. Assuming that the quantization errors are uncorrelated and 
uniformly distributed between –1/2 and +1/2, equation (5.71) can be used to show that the (two-
sided ) power spectral density of the quantization noise is given by 
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 (5.74) 

 
where the variance is  2 = 1/12. The signal to noise power spectral density ratio is then given by 
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and this can be written in decibel form as 
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 (5.76) 

 
Increasing the clock frequency by a factor of 10 only improves the SNR by 10 dB whereas 
increasing the DAC resolution by a single bit increases it by 6 dB. Once FClock is greater than 
several hundred MHz, the SNR is more easily improved by adding additional bits of resolution 
than by increasing the clock frequency.  

5.6 Techniques for Mapping   to Sin( ) 

A number of different methods can be used to map the phase accumulator value   to the desired 
sinusoidal output value given by sin( ) as outlined in Table 5-4. Several of these methods are 
quantitatively compared in [17]. 
 The table look-up method is widely used for its simplicity. For better spurious 
performance, however, a straight table look-up approach is not space efficient and other 
techniques like the trigonometric method by Sunderland should be adopted. In this method, the 
phase accumulator value represented by   is first reflected to a value that falls within the first 
quadrant as  =  mod (  / 2 ). This resultant angle is then broken into a sum of coarse and fine 
angles as  = (  +  ) +   with  <  / 2 and  
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Simple trigonometry and the use of the small angle approximations lead to 
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 (5.78) 

 
The two quantities stored in table lookups are sin(  +  ) and sin(  ). Additional look-up table 
storage compression can be obtained by making use of the first-order Taylor series expansion for 
sin( ) and storing the quantity 
 
Table 5-4 Summary of Sin( ) Mapping Techniques  

Method Description Pros & Cons 
Table Look-Up  Truncated sine values are located 

in a read-only memory table using 
  as an index [18]. 

Simplicity. 
 
Relatively poor spurious 
performance. 

Combinatorial Logic  Makes use of the Taylor series for 
sin( ) and representing   as an 
algebraic polynomial which is 
expanded and bit-terms collected 
[7]. 

Small size. 
 
Widely varying spurious 
performance versus frequency 
word. 

Trigonometric  
(i.e., Sunderland) 

Makes use of a coarse and fine 
table look-up while also exploiting 
small angle approximations [7]. 

Good spurious performance vs 
complexity. 
 
For very low spurious 
performance, other methods are 
more compact. 

Polynomial Taylor or Chebyshev series 
expansion used for sin( ). 

Arbitrarily good spurious 
performance. 
 
Computationally more complex. 

CORDIC Uses CORDIC algorithm to 
compute sin( ) and cos( ). 

Arbitrary precision possible. 
 
Can be pipelined for speed. 
 
No ROM involved. 

Table Look-Up Plus 
Interpolation 

Coarse sin( ) values are saved in a 
table and intermediate values 
interpolated using Taylor series. 

Arbitrarily good precision. 
 
Excellent compromise between 
complexity and precision. 
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   sin
2 2

f x x x
    
 

 (5.79) 

 
Once f (x) has been computed using (5.79), it is a simple matter to obtain the sine value by 
adding the (  / 2 ) x quantity back in.  
 The CORDIC method is a powerful method that can be used to compute a host of 
transcendental functions including sine and cosine as discussed in the section that follows. 

5.6.1 CORDIC Methods 

The Coordinate Rotation Digital Computer method published by Volder [19] is commonly 
referred to as the CORDIC method. The method can be used to directly compute the functions 
shown in Table 5-5. The CORDIC method can also be extended to compute natural logarithms 
based upon the identity 
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 (5.80) 

 
Table 5-5 CORDIC-computable functions 

 sin    cos    1tan x  × ÷ 
 sinh    cosh    1tanh x    

1tan
y

x
  
 
 

 2 2x y  2 2x y  y xz     sinh coshze z z   

 
 
 The CORDIC method can be derived using the general (Givens) rotation of the 
coordinate pair ( x, y ) by the angle   as 
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     
         

   (5.81) 

 
The rotation is length-preserving since the determinant of the matrix is one. If ( x, y ) lies on the 
unit-circle, (5.81) is nothing more than the simple trigonometric identity for the sum of two 
angles as shown in Figure 5-33. It is convenient to rewrite (5.81) as 
 

 
   
   

cos tan

cos tan

x x y

y y x

 

 

    
    

 (5.82) 
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 ,x y

 ,x y 



 
Figure 5-33 Simple angular phase rotation of vector ( x, y ) by angle  to produce ( x, y ) 
 

Assume the total phase rotation to be performed on ( x, y ) is given by . When   is 
represented by an N-bit binary quantity within the range of – / 2 to  / 2, it can be represented 
by a sum of restricted elementary phase rotations ± k where tan(  k ) = 2–k thereby making the 
multiplication by tan( k ) in (5.82) a simple binary shift. In this context, the initial value  is 
given by 

 
1

0

N

n n
n

d 




  (5.83) 

 
The complete CORDIC algorithm for |  |   / 2 takes the form  
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





 

 

   

 
  
  





 (5.84) 

 
where ( x, y ) must be initialized to ( 1, 0 ) and 
 

 
1

2

0

1 2 0.60725292 for  large
N

n
N

n

K N






    (5.85) 
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When implemented in hardware, all of the  k values should be saved in read-only-memory as 
well as the value for 1 / KN  for greatest computational economy.  

The other functions shown in Table 5-5 can be computed using similar methods to 
(5.84) as discussed in [20] and [21]. The CORDIC method is used for direct digital frequency 
synthesis in the sections that follow. 

5.6.1.1 CORDIC with First-Order Correction 

Symmetry arguments can be used to reduce the computation range required from the CORDIC 
computation to 0      / 4 as with most other methods. Since each CORDIC iteration reduces 
the worst-case phase error residual by a factor of two, it only takes six iterations to reduce this 
error down to less than 1 where small-angle approximations can be conveniently used. The first-
order correction method described here performs a relatively few number of CORDIC iterations 
and then uses first-order approximation methods to complete the computation. 
 Assume that a minimum of six CORDIC iterations have been performed thereby 
reducing the residual rotational angle that must be handled   to less than 1. The sin( ) and cos( ) 
values computed up to this point are denoted here by Q and I respectively. Making use of the 
first-order approximation 
 

 1je j    (5.86) 

 
the final cosine and sine values can be approximated as the real and imaginary parts of 
 

    je I jQ I Q j Q I U jV          (5.87) 

 
Even though the modulus of exp( j ) and I + jQ are both unity, the modulus of (5.87) is not 
precisely unity because of the approximations being used. The amplitude of (5.87) is in fact 
equal to 

 21U jV     (5.88) 

 
Unity-amplitude can be restored to (5.87) by multiplying by the reciprocal of (5.88) and this can 
be approximated by 
 

 
2

1 2

1
1

21
g




  


 (5.89) 

 
 An equivalent solution can be obtained by rewriting (5.88) as 
 

 
2

1U jV     (5.90) 

 
where | | << 1. Assuming that the gain-correction term must be applied equally to U and to V, 
this gain correction can be written as 
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   

2

2 2 2 2

1
1

21
1 1

1 1 3
2 2

g

U V U V




  


        

 (5.91) 

 
 A block diagram of the complete first-order CORDIC correction method using (5.91) is 
shown in Figure 5-34. The spurious performance of this method is truly exceptional as shown in 
Figure 5-36. As shown in this figure, five CORDIC iterations are sufficient to reduce the worst-
case spur level to less than –100 dBc when the residual phase rotation method described here is 
incorporated. 

CORDICI


CORDICQ



First-Order Rotation

OUTI

OUTQ

 2 2
2

1
3

2 x xg I Q    

2g

2g

Modulus Correction

 
Figure 5-34 First-order CORDIC correction method 

5.6.1.2 CORDIC with Second-Order Correction 

The so-called first-order correction method just described is really a second-order method 
because the corrective action is taken in two sequential steps, the first for phase and the second 
for amplitude. It is consequently worthwhile to reconsider the approximation made in (5.86) and 
look at the benefits obtained by using a second-order approximation to begin with. Taking this 
approach, 

 

   
2

cos sin

1
2

je j

j

  

 

 

  
 (5.92) 

 
Using this approximation, the residual error phase rotation becomes 
 

  
2 2

1 1
2 2

je I jQ I Q j Q I U jV   
    

            
    

 (5.93) 

 
The modulus of this result is given by 
 

 
4

1
4

U jV


    (5.94) 
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 The complete second-order CORDIC correction method is shown in Figure 5-35. The 
worst-case spurious performance for a CORDIC appended with this method is shown in Figure 
5-37. For a given number of CORDIC stages (or iterations), this method is superior to the first-
order method by 6 dB or more. Owing to its greater simplicity and better spurious performance, 
the second-order algorithm is recommended for use over the first-order method. 

CORDICI


CORDICQ



OUTI

OUTQ

2

1
2

 
 

 

  
Figure 5-35 Second-order CORDIC correction method 
 

When the number of CORDIC iterations is only five or six, it is worthwhile replacing 
the CORDIC function with a simple table look-up function. The table contains the quantities 
ICORDIC, QCORDIC, and Q which is the quantized amount of phase represented by (ICORDIC, 
QCORDIC). The Q quantity makes it possible to compute the residual phase that still remains to be 
rotated that is represented by  in Figure 5-35. 

 

 
Figure 5-36 Worst-case spur level for CORDIC using the first-order residual phase rotation 
method described in this section26 
                                                                 
 
 
26  MATLAB script u16455_cordic2.m with an input parameter of 3.  
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Figure 5-37 Worst-case spur level for CORDIC using the second-order residual phase rotation 
method described in this section.27 These results are markedly better than the first-order method 
described in the previous section for a given number of CORDIC iterations. 
 
 This discussion about the CORDIC method has now come full-circle in that it has led 
back to using a fairly small look-up table to deal with the coarse portion of the phase, combined 
with a Taylor-series based final phase rotation. 

5.7 D-to-A Converter Imperfections 

DAC imperfections can be grouped into the following categories: 
 

 Codeword-to-voltage (or current) precision issues 
 Output sample-and-hold / buffer amplifier imperfections including harmonic distortion, 

finite slew-rate, glitches, and finite bandwidth 
 Circuit-related noise 
 Aperture jitter 
 Other higher-order degradations 

 
These imperfections manifest themselves quite differently across the many different DAC design 
architectures possible. Generally speaking, however, DAC performance is most frequently 
described using the terminology below [6]: 
 

Differential Nonlinearity (DNL)  the normalized error between any two adjacent 
converter codes with respect to an ideal LSB based on the full-scale range of the 
converter. The DNL must always be less than unity in order for the converter to be 
considered monotonic. 

                                                                 
 
 
27  MATLAB script u16455_cordic2.m with an input parameter of 4.  
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Integral Nonlinearity (INL)  the normalized error between the actual converter output 
value and the best straight-line regression through all of the converter’s codes, with 
respect to an ideal LSB based upon the straight-line regression. 
 
Signal-to-Noise Ratio (SNR)  the ratio of desired signal power to noise power at the 
converter output for an applied full-scale sine wave, normally expressed in dB. For an 
ideal Nyquist-rate DAC, the SNR is given by 1.76 + 6.02N dB where N is the number of 
bits in each digital codeword used. 
 
Signal-to-Noise-plus-Distortion (SNDR)  the ratio of desired signal-power-to-noise-
plus-distortion power including any dc offset that may be present, up to the Nyquist 
frequency for a full-scale sine wave output. Normally expressed in dB. 
 
Total Harmonic Distortion (THD)  measured in the frequency domain for a full-scale 
sine wave output, as a ratio (expressed in dB) between the desired sine wave amplitude 
and the root-mean-square sum of selected harmonics present in the DAC output. 
 
Effective Number of Bits (ENOB)  calculated from the SNDR for a full-scale sine wave 
as 

 
1.76

bits
6.02

dBSNDR
ENOB


  (5.95) 

 
Several of these important quantities are shown graphically in Figure 5-38 for additional clarity. 

DAC Codeword Value

Best Straight-
Line Fit

Not Monotonic

INL

DNL

Offset

000v

111v

 
Figure 5-38 DAC imperfections illustrated for a 3-bit converter 

5.7.1 Unequal Rise and Fall Times 

Unequal rise and fall times in the buffer electronics following the DAC core shown in Figure 
5-39 can lead to additional harmonic content at the DAC output. The ideal DAC output is shown 
in the top of the figure whereas the DAC buffer’s finite rise and fall times lead to the familiar 
decayed exponential shaping in the middle and lower portions of the figure.  
 An infinite precision DDS / DAC ideally produces a sinusoidal stair-step output voltage 
waveform having only one Fourier component within the first Nyquist zone (i.e., 0 < f < FClock / 
2). Unequal rise and fall times will, however, create harmonic distortion products at integer-
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multiples of the desired sinusoidal output frequency which can also fall within the first Nyquist 
zone. An exaggerated situation is shown in Figure 5-40 for the case of a sinusoidal signal. 

ClockT 2 ClockT 3 ClockT 4 ClockT0

1V

2V

3V

4V
5V

Time Constant rise

Time Constant fall

 
Figure 5-39 DAC finite rise and fall times. Output noise and spurious levels are increased when 
rise and fall are unequal due to the underlying nonlinearities involved. The rise = fall case 
corresponds to a simple lowpass filtering operation of the ideal stair-step signal when TClock >> 
rise. 

 
Figure 5-40 Ideal DAC output versus compromised output28 in the case of a sinusoid. 
Exaggerated case shown with FSine = 1 kHz, sample rate FClock = 16 kHz, rise = 0.5 / FClock, fall = 
1 / FClock. 

                                                                 
 
 
28  Computed using u16937_dac_risefall.m. 
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 The Fourier transform of the output sinusoid can be computed by breaking the time 
domain signal into its constituent steps and summing their respective transforms. The Laplace 
transform for the nth time segment spanning (n – 1)TClock to n TClock is given by 
 

 

 

 

1

1 exp

exp 11
exp 1

1

Clock
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n Clock
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n

n nx n
n

sT
V

s

L s n T
s T

V V
s






  
 
               

        

 (5.96) 

 
where the Vx(n-1) value corresponds to the voltage value at the end of the previous time interval, 
and n is equal to rise if the signal is increasing in value during the time segment or fall if the 
signal is decreasing during the time segment. The Fourier transform can be directly computed 
from (5.96) leading to the power spectral density, and predicted harmonic levels easily follow. 
Harmonic levels are shown in Figure 5-41 and Figure 5-42 for two different rise-time cases. In 
both cases, the appearance of unwanted harmonic distortion products is crushed if the rise and 
fall times can be kept approximately equal. 
 

 
Figure 5-41 Predicted harmonic levels versus imbalance in rise and fall times. FSine = 1 kHz, 
FClock = 16 kHz, rise = TClock / 4.  
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Figure 5-42 Predicted harmonic levels versus imbalance in rise and fall times. FSine = 1 kHz, 
FClock = 16 kHz, rise = TClock. 

5.7.1.1 Return-to-Zero to Combat Unequal Rise and Falls Times 

Unequal DAC rise and fall times lead to harmonic distortion as discussed in the previous section. 
Even though the harmonic distortion becomes negligible as the rise and fall times become equal, 
sufficient equality is difficult to achieve at high clock rate frequencies. Operating the DAC in a 
return-to-zero manner as shown in Figure 5-43 can combat this issue very effectively. 
 The basic problem illustrated in Figure 5-43 is that the individual areas of each pulse 
region shown in the center diagram are not uniformly proportional to the respective pulse-heights 
Vk. When the DAC output is composed of return-to-zero pulses as shown in Figure 5-43, 
however, each pulse contains ample time to fully exercise complete pulse rise and fall regions.  
 Referring to the first pulse region shown in Figure 5-43, the pulse area Ap is given by 
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 (5.97) 

 
where Vx1 is the ultimate pulse amplitude attained prior to the fall-time region. Normally the rise 
and fall times are very short with TP >> rise and TP >> fall being valid assumptions. This makes 
it possible to neglect the exponential terms in (5.97) and take Vx1 = V1 thereby producing 
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The unequal rise and fall times consequently lead to a small gain error that is equal for every 
output pulse thereby averting the nonlinear pulse area behavior present in Figure 5-43. This 
approach forces the DAC to be operated at a higher output clock rate, but the improvements in 
the output spectral quality usually outweigh this consideration. 
 

tClockT 2 ClockT 3 ClockT

rise

fall
1V

2V

3V
pT

 
Figure 5-43 Return-to-zero DAC output pulses 

5.7.2 Assessing DAC Imperfections 

The techniques described in this chapter are very effective in suppressing spurious contributions 
due to computational issues, but DAC imperfections and harmonic distortion within any 
subsequent analog circuitry can still mar the DDS output spectral purity.  
 The most accurate way to assess DAC performance is in the frequency domain using a 
high-quality spectrum analyzer. Narrowing down DAC performance limitations to specific 
aspects of a DAC’s detailed design (e.g., INL, DNL, clock jitter, harmonic distortion, etc.) is 
considerably more challenging and requires genuine detective work, however. Many high-
performance data converters integrate self-calibration methods within themselves and the 
residual performance imperfections that remain are consequently more complicated to unravel. 
Some of the best diagnostic methods are still the traditional single-tone and two-tone testing 
methods.  
 Signal processing has certainly improved DAC performance characterization. A 
characterization approach that simultaneously estimates ADC and DAC performance using 
maximum-likelihood estimation is described in [22] for example. In the case of harmonic 
distortion, an arbitrary waveform generator technique is described in [23] that exploits 
relationships like those discussed in Section 5.4 to assess the underlying distortion terms and 
then reduce them substantially. DAC and ADC performance assessment has become a stand-
alone technical discipline as performance levels and design sophistication have continued to 
advance. 

5.8 DAC Sin(x) / x Compensation 

An ideal DAC creates aliasing and a sin( x ) / x shaping in the frequency domain as discussed 
earlier in the context of Figure 5-3. For an arbitrary continuous-time input signal v( t ) in Figure 
5-2 having a Laplace transform of V( s ), the Laplace transform of the output signal is given by29 
 

                                                                 
 
 
29 See Section 6.8.3 of [6] for a detailed derivation. 
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    1 exp 1 2Clock

mClock Clock

sT m
D s V s j
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


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  
  (5.99) 

 
The input signal spectrum V( s ) is assumed to already be band-limited as required by the Nyquist 
theorem. Equation (5.99) can be rewritten as 
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/ 2
Clock

Clock Clocks j
mClock

T
D s j T V j jm

T


  








    (5.100) 

 
where Clock = 2  / TClock. The first six Nyquist zones in Figure 5-3 are labeled here in Figure 
5-44. Each zone contains essentially the same spectral information of V( s ) albeit shifted in 
frequency, spectrally inverted for the even-numbered zones, and predictably weighted by the sin( 
x ) / x frequency domain shaping factor.  
 In general, it is possible to use the signal content of any Nyquist zone for the DDS 
output although practical considerations usually limit consideration to the first two or three zones 
shown in the diagram. DAC imperfections (e.g., nonlinearities) normally degrade the spectral 
performance for the higher-order zones. The desired signal becomes increasingly difficult to 
filter out amid the stronger lower-order Nyquist zones if a higher-order zone is adopted for use. 
 The quantization noise spectrum is also shaped by the same sin( x ) / x frequency 
domain shaping as the desired signal. Consequently, even though the DDS signal amplitude in 
the 2nd or 3rd Nyquist zone is smaller than in the first Nyquist zone, the quantization noise level is 
theoretically reduced by the same amount. 
 The sin( x ) / x shaping can only be compensated for in one Nyquist zone at a time by 
virtue of the Nyquist theorem. The nth Nyquist zone extends from ( n – 1 ) FClock / 2 to n FClock / 2 
with the fundamental Nyquist zone designated as the first zone. It is helpful to substitute ju = j 
– jmClock into (5.100) and rewrite it as 
 

     
sin

2
1 exp

2
2

Clock

m Clock
m Clock

Clock

uT
m

uT
D ju jm j V ju

uT
m






            
     

 (5.101) 

 
In this context, u is limited to –Clock / 2 < u < Clock / 2 because V( ) is band-limited to that 
range. Compensating the nth Nyquist zone entails using the correct the Dm along with a possible 
spectral inversion of u as summarized in Table 5-6. 
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Figure 5-44 Ideal DAC output sin( x ) / x shaping with the first six Nyquist zones shown 
 
 
Table 5-6 Parameter Values for nth Nyquist Zone Compensation 

Nyquist Zone, n m Polarity for u, p 
1 0 + 
2 1 – 
3 1 + 
4 2 – 

n 
2

n 
  

   1
1

n  

 
In order to faithfully reproduce V ( ju ) for the nth Nyquist zone, the sin( x ) / x portion of 

(5.101) must be counteracted by the compensation function 
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   

 (5.102) 

 
This compensation can be implemented by using a FIR filter immediately before the DAC that 
adequately matches the frequency domain description given by (5.102). The associated impulse 
response of the filter gDAC can be obtained using a number of traditional digital filter design 
methods including (i) evaluation of (5.102) over a grid of frequencies followed by an inverse 
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FFT,30 (ii) use of the eigenfilter design method,31 or (iii) using the fir2 function in MATLAB 
which is based upon the frequency sampling method.32 For the second and higher Nyquist zones, 
the gain in the vicinity of u = 0 in (5.102) must be constrained because it otherwise becomes 
infinite. This gain modification can be done by limiting the maximum gain that is allowed to be 
used in the compensation function or by following (5.102) with an additional highpass filtering 
function as done in the computed examples which follow. 

Two examples can provide additional insight. In the first example, the sin( x ) / x 
shaping is to be compensated for in the first Nyquist zone using a length-17 FIR filter. The 
required frequency-domain compensation function is shown in Figure 5-45 and the computed 
length-17 FIR tap-weights are shown in Figure 5-46. The resultant passband flatness in the first 
Nyquist zone is shown in Figure 5-47. Higher-order FIR filters are usually required to 
compensate higher-order Nyquist zones as illustrated in the second example which deals with the 
third Nyquist zone. In this example, a length-41 FIR filter is required to achieve approximately 
the same degree of flatness. The required frequency domain compensation function is shown in 
Figure 5-48, the computed FIR tap-weights in Figure 5-49, and the resultant compensation 
flatness for the third Nyquist zone is shown in Figure 5-50. 
 

Figure 5-45 Example 1 frequency domain 
compensation function for the first Nyquist 
zone33 

Figure 5-46 Example 1 FIR filter tap weights 
computed 

 

5.8.1 Return-to-Zero to Reduce sin(x)/x Roll-Off 

One of the most simple methods to lessen sin( x ) / x roll-off in the first Nyquist zone is to 
configure DAC operation so that data-zeros are inserted between each input sample. Although 
this normally requires the DAC to be operated at twice the speed, the first spectrum null is 
pushed out to twice the frequency thereby lessening the lower frequency spectrum roll-off. 
Operation in the return-to-zero mode was discussed earlier in Section 5.7.1 as a very effective 
means for combatting distortion products that arise from unequal DAC rise and fall times. 

                                                                 
 
 
30  MATLAB script u16870_sinc_compensation.m. 
31  Eigenfilter method is described in Section 3.8 of [6]. 
32  MATLAB script u16872_sinc_comp.m. 
33  MATLAB script u16872_sinc_comp( 1, 16 ). 
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Figure 5-47 Example 1 resultant frequency 
domain flatness showing that the first Nyquist 
zone is compensated for very well. The 
normalized frequency is with respect to the 
sampling rate. 

 
Figure 5-48 Example 2 frequency domain 
compensation function for the third Nyquist 
zone34 

  
 

 
Figure 5-49 Example 2 FIR filter tap weights 
computed 

 
Figure 5-50 Example 2 resultant frequency 
domain flatness showing that the third Nyquist 
zone is compensated for very well. The 
normalized frequency is with respect to the 
sampling rate. 

 
 
 
 
 

                                                                 
 
 
34  MATLAB script u16872_sinc_comp( 3, 40 ). 
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5.9 Avoiding Harmonic Distortion Products 

Harmonic distortion terms arising from imperfections in the DAC are difficult to deal with 
because techniques like dither are rather ineffective in suppressing them. One of the most 
effective methods to avoid these products is to employ a variable modulus divider following the 
DDS which makes it possible to operate the DDS over a frequency-limited “sweet spot” [FMin, 
FMax] where its performance is excellent, and realize extended coverage bandwidth [ F1, F2 ] with 
appropriate changes in the output divide ratio. The resultant configuration is shown in Figure 
5-51. 

ClockF

 ,Min MaxF F
 1 2,F F

 
Figure 5-51 DDS augmented with variable-modulus output divider in order to realize an 
expanded percentage bandwidth while operating the DDS over a restricted frequency range for 
better harmonic distortion performance 
 
 As an illustrative example, assume a DDS is operating from a 200 MHz clock. Using 
the theory developed in Section 5.4, the second Nyquist zone spanning 137 MHz to 147 MHz is 
void of harmonic distortion products through the 5th order. The bandpass filter is used to strongly 
attenuate any out-of-band spurious tones which may be present. This 10 MHz tuning range 
represents a bandwidth percentage of only ±3.52%. If this DDS is combined with a variable-
modulus divider having divide ratios from 14 to 23, an output frequency range in excess of 6 
MHz to 10 MHz can be realized as shown in Table 5-7; a percentage tuning range of ±25% 
centered on 8 MHz. 
 
Table 5-7 DDS Coverage from 6 MHz to 10 MHz Avoiding Harmonic Distortion 

Output Frequency Span  
F1, MHz F2, MHz M DDS FMin DDS FMax 

9.80 10.00 14 137.20 140.00 
9.15 9.80 15 137.25 147.00 
8.60 9.15 16 137.60 146.40 
8.15 8.60 17 138.55 146.20 
7.70 8.15 18 138.60 146.70 
7.25 7.70 19 137.75 146.30 
6.90 7.25 20 138.00 145.00 
6.60 6.90 21 138.60 144.90 
6.25 6.60 22 137.50 145.20 
6.00 6.25 23 138.00 143.75 

 
 In order to have continuous frequency coverage at the divider output, the minimum 
divide ratio must be constrained as 
 

 Min
Min

Max Min

F
M

F F



 (5.103) 
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The lower frequency limit F1 can be made arbitrarily low by increasing M as needed whereas the 
upper frequency limit for continuous coverage F2 is limited by (5.103) to FMax / MMin. In the 
present example, MMin = 14 and this limits F2 to be less than or equal to 10.5 MHz.  

5.10 Sinusoidal DDS Output Spur Reduction Using Dither 

There are a number of ways in which unwanted spurious tones can be created at the output of a 
sinusoidal DDS. These mechanisms include: 
 

 Deterministic DAC clock jitter (Section 5.5.1.1) 
 Phase truncation (Section 5.5.2) 
 DAC quantization (Section 5.5.3) 
   to sin(   ) imperfections (Section 5.6) 
 DAC imperfections (Section 5.7) 

 
Dithering can be incorporated into a DDS in order to combat some of these spurious 
mechanisms. In general, dithering reduces the spurious sidebands by randomizing the underlying 
quantization or error process responsible for creating the spurs. The performance cost associated 
with dithering is an increase in the output noise floor level. 
 Dithering takes the form of a random numerical quantity which is normally added into 
the computational flow of the DDS. Dithering can be inserted into the DDS by (i) dithering the 
input frequency control word, (ii) adding it in immediately before the   to sin(   ) conversion, 
(iii) modifying the amplitude of the sin(   ) output after the conversion, or other equivalent 
means as suggested in Figure 5-52. These techniques are examined in the sections that follow. 
 Dithering is not the only way in which periodic errors within a DDS can be defeated, 
but it was one of the first methods appended to the original DDS concept to fulfill this purpose. 
The noise shaping methods described in Section 5.11 are also very effective for reducing 
unwanted spurious tones and they offer additional benefits as well. 

5.10.1 Frequency Control Word Dithering 

Frequency control word dithering is represented by Dither Source 1 in Figure 5-52. This dither 
source must be void of any average dc term so that the desired output center frequency is not 
altered. It is usually desirable to form the dithering source as a uniform random number 
generator followed by a 1st-order differentiator as shown in Figure 5-53 in order to avoid this 
frequency error issue at the DDS output. In this form, the highpass filter precisely compensates 
for the subsequent phase integration which occurs in the phase accumulator making this method 
equivalent to the phase dithering method discussed in the next section. 
 In the context of Figure 5-52 with N = 17 bits, W = 5 bits,35 and no dithering, the worst-
case phase-truncation related spur levels are about –30 dBc as shown in Figure 5-54. The output 
noise level is completely overshadowed by the discrete spurious spectrum elements. Inclusion of 
the frequency-word dithering shown in Figure 5-53 eliminates all of the observable discrete 
spurious tones when  = 0.90, but this choice for  results in substantial close-in phase noise 
degradation as shown in Figure 5-55. Setting the highpass filter parameter  = 1.0 eliminates this 
unwanted close-in phase noise as shown in Figure 5-56 but some spurious tones still survive. The 
 parameter provides a clear means to trade off spurious performance with close-in phase noise 
performance. 
                                                                 
 
 
35  Accumulator value spans over [ 0, 2N – 1]. W  spans over [0, 2W – 1], both in unsigned binary form here. 
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



  sin W
W


DV

DACV



 
Figure 5-52 Possible dither insertion points within a DDS 
 

kr
 kz

  
Figure 5-53 Dither source configured with a 1st-order differentiator / highpass filter making it 
suitable for dithering the frequency word input in Figure 5-52. Parameter   must be unity in 
order to remove any hint of random center frequency walking at the DDS output. 

5.10.2 Phase Dithering 

Phase dithering (using Dither Source 2 in Figure 5-52) is particularly attractive because spurious 
tone magnitudes due to finite word-length effects in the phase representation are accelerated 
from the usual –6 dBc per phase bit to –12 dBc per phase bit [24]. This is at the expense of a 
small increase in output system noise. Phase dithering makes it possible to substantially reduce 
the size and complexity of the sin(   ) computational hardware compared to a non-dithered DDS 
while retaining equal or better spurious performance. 
 In the context of Figure 5-52, W represents the number of phase-bits following 
truncation. The dither value that is added to   prior to truncation is a uniformly distributed value 
within the span [0,  ) where  = 2 2–W radians ( or equivalently [ 0, 2W – 1] in binary form ). 
Assuming no other imperfections in the DDS are present when this kind of phase dithering is 
included, the upper-bound for the output signal to (total) noise ratio is given by [25, 26] 
 

 6.02 6.93  dBUSNR W   (5.104) 

 
and a lower-bound is similarly given by 
 

 6.02 8.18  dBLSNR W   (5.105) 

 
In actual practice, it is more helpful to know what the C / No ratio is on a per-Hz basis. So long as 
W < N – 6 in Figure 5-52 so that the error sequences create more or less a continuum of spurious 
products, it suffices to use the lower-bound and state that 
 

  106.02 8.18 10log   dBc/Hz
2

Clock

o

FC
W

N
     
 

  (5.106) 
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Figure 5-54 DDS with FClock = 100 MHz, N = 
17 bits, W = 5 bits, without dithering 

Figure 5-55 DDS with FClock = 100 MHz, N = 
17 bits, W = 5 bits, with frequency-word 
dithering employed.36 Dithering value rk in 
Figure 5-53 is uniformly distributed over [–211, 
211]. Parameter  = 0.90 which leads to 
substantial close-in phase noise appearing. 

 

 
Figure 5-56 Identical to Figure 5-55 except that  = 1.37 Although some spurious artifacts 
remain, no close-in phase noise degradation is observable. 
 
The worst-case spur level with phase dithering applied is given by [24] 
 

 12.04 7.84 dBcSpurL W    (5.107) 

 
The spur level observed is frequently better than that predicted by (5.107) because this is a fairly 
conservative worst-case bound.  

                                                                 
 
 
36  Using u16972_dds_dither2( 5, 12, 0.90, 1). 
37  Using u16972_dds_dither2( 5, 12, 1.0, 1). 
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 The benefits of phase dithering are very visible in the following example. In the original 
DDS, only 5 phase-bits are used for the phase representation after truncation and the typical 
worst-case spur levels are about –30 dBc as shown in Figure 5-57. When phase dithering is 
added to the same DDS, the worst-case spur level is reduced to about –60 dBc as shown in 
Figure 5-58. The slight penalty in C / No due to the dither is inconsequential compared to the 
severe discrete spur nature of the DDS output without dithering present.   
 

 
Figure 5-57 DDS output power spectral 
density for FClock = 100 MHz, FDDS = 12 MHz, 
5 phase-bits without phase-dithering.38 

 
Figure 5-58 DDS output power spectral 
density for FClock = 100 MHz, FDDS = 12 MHz, 
5 phase-bits and phase-dithering used.39 

  

5.10.3 Sin(   ) Amplitude Dithering 

Amplitude dithering is implemented by using Dither Source 3 in Figure 5-52. Without any 
dithering present, DAC-related quantization can lead to appreciable spurious levels because of 
the significant correlation in the error sequences. An example output spectrum is shown in Figure 
5-59. If rounding is incorporated immediately before the DAC quantization, the output spectrum 
is changed appreciably to that shown in Figure 5-60. The rounding does very little to suppress 
the more serious spurs, but it does lower the apparent noise floor significantly. When dithering is 
added immediately before the DAC quantization, the discrete spurs are completely eliminated as 
shown in Figure 5-61. The only degradation caused by inserting the dither is that the total 
quantization noise is effectively doubled [26], but since this noise is spread across the full 
Nyquist frequency range, this is usually a very acceptable performance penalty to accommodate. 

Even though the peak-to-peak amplitude of the dither source is only a single DAC LSB, 
it is effective in eliminating the discrete spurious frequencies because it randomizes the resultant 
quantization error sequence thereby removing any residual periodicities. 

 
 
 
 
 

                                                                 
 
 
38  From u16968_dds_dither1.m. 
39  From u16968_dds_dither1.m. 
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Figure 5-59 Straight DDS with no spur-
reduction methods used.40 FClock = 100 MHz, 
FOut = 21 MHz thereby leading to 1 MHz 
spurs. Ideal DAC with 8-bit precision 
assumed. 

 
Figure 5-60 DDS with rounding immediately 
ahead of the DAC quantization.41 FClock = 100 
MHz, FOut = 21 MHz thereby leading to 1 MHz 
spurs. Ideal DAC with 8-bit precision assumed. 

 

 
Figure 5-61 DDS with dithering added immediately ahead of the DAC quantization.42 FClock = 
100 MHz, FOut = 21 MHz. Ideal DAC with 8-bit precision assumed. No evidence of discrete 
spurs remains. 
 
 
 

                                                                 
 
 
40  MATLAB call u16976_dds_dither3(1). 
41  MATLAB call u16976_dds_dither3(2). 
42  MATLAB call u16976_dds_dither3(3). 
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5.10.4 Sin(   ) Amplitude Dithering Using Lowpass-Filtered Noise 

Noise insertion can be used to combat output spurious components that arise from DAC-related 
finite precision effects.43 This method is not effective for suppressing spurious tones which result 
from phase truncation effects, however. A block diagram of the situation considered here is 
shown in Figure 5-62 where the ideal sine wave input has already been created elsewhere within 
the DDS. The filtered noise is intended to remove any periodicity in the quantization error 
sequence in the same way Nyquist-rate dithering was used in the previous section. 
 



 
Figure 5-62 Additive noise approach for reducing DAC finite-precision related spurious tone 
outputs 
 
 In the following discussion, the amount of random noise added is measured in terms of 
the noise variance at the output of the LPF and the bandwidth of the LPF is given in terms of a 
percentage of the DAC clock frequency FClock. The noise at the LPF input is assumed to be mean-
zero, uniformly distributed, and created at the same FClock rate. As shown momentarily, the 
relationship between the noise variance, LPF bandwidth, and resultant spurious suppression is 
fairly simple. In each example, the DAC precision is always 8-bits, the sampling rate is fixed at 
100 Msps, and the lowpass filter is composed of two cascaded N = 5 Butterworth lowpass filters.  

The spurious signature can vary dramatically depending upon the frequency of the 
output sine wave being synthesized as shown in Figure 5-63 and Figure 5-64. When the lowpass 
filter bandwidth is 2% of FClock, only a small amount of noise is required to eliminate the discrete 
spurs as shown in Figure 5-65 and Figure 5-66. If the lowpass filter bandwidth is decreased, the 
variance of the filtered noise must be increased in order to obtain the same amount of spurious 
suppression and flat noise floor behavior as shown in Figure 5-67 and Figure 5-68. 

In the Nyquist-rate dithering discussed in the previous section, the residual quantization 
error was uncorrelated because the dithering noise was completely random on a sample-by-
sample basis. In the filtered noise case, however, the filtering introduces correlation between 
samples which can only be offset by using more noise.   

For the Nyquist-rate dithering case, sample-adjacent dither values are assumed to be 
completely uncorrelated so that E( dk dk–1 ) = 0 and 

 

      2 2
1E 2Ek k kd d d      (5.108) 

 
where the discrete-time dither values are represented by dk. In the filtered noise case, however, 
adjacent dither values are correlated. Owing to the high over-sampling rate at the lowpass filter 
output, it is convenient to discuss this correlation issue in terms of continuous-time values rather 
than discrete-time, and the correlation function is given by 

                                                                 
 
 
43  Sinusoidal tones may also be used but this method is not addressed here. 
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Figure 5-63 In the absence44 of any corrective 
dithering, the worst-case spur is only about –
50 dBc with a plethora of other spurs at about 
–70 dBc when synthesizing FDDS = 20 MHz. 

 
Figure 5-64 In the absence45 of any corrective 
dithering, the worst-case spur is about –57 dBc 
with a plethora of other spurs at about –60 dBc 
when synthesizing FDDS = 21 MHz. 

  

 
Figure 5-65 Insertion of lowpass filtered noise 
suppresses the discrete spurs entirely but some 
noise floor irregularity is still present.46 
Lowpass filter bandwidth = 2% of FClock. 
Standard deviation of filtered noise = 1 DAC 
LSB. 

 
Figure 5-66 Insertion of lowpass filtered noise 
suppresses the discrete spurs entirely but some 
noise floor irregularity is still present.47 
Lowpass filter bandwidth = 2% of FClock. 
Standard deviation of filtered noise increased 
to 3 DAC LSBs in order to obtain a relatively 
flat noise floor. 

 
 

                                                                 
 
 
44  From calling u16977_dds_dither4( 8, 20, 2, 0 ). 
45  From calling u16977_dds_dither4( 8, 21, 2, 0 ). 
46  From From calling u16977_dds_dither4( 8, 20, 2, 1 ). 
47  From From calling u16977_dds_dither4( 8, 20, 2, 3 ). 
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Figure 5-67 When the lowpass filter 
bandwidth is reduced to only 1% of FClock, 1 
LSB of dithering is still sufficient to suppress 
discrete spurs but the noise floor behavior is 
erratic as shown.48 

Figure 5-68 The dither standard deviation 
must be increased to roughly 10 LSBs to obtain 
consistent noise floor behavior when the 
lowpass filter bandwidth is reduced to 1%.49 

      2j f
d dR S f e df 





      (5.109) 

by way of the Wiener-Khintchine theorem for wide-sense stationary random processes. In this 
form, Sd ( f ) represents the power spectral density of the random noise source at the lowpass 
filter input. When this noise source is spectrally white and the lowpass filter has a brick wall 
attenuation characteristic with a corner frequency of Fc Hertz, (5.109) is given by 
 

        2 sin 2
0 2 0

2

c

c

F
cj f

d d c d
cF

F
R S e df F S

F
   


 

   (5.110) 

 
Dither samples which are only separated by a few clock intervals TClock are highly correlated 
since Fc << FClock. 
 The Nyquist-rate dithering used a random value having a peak-to-peak value range of 
only one LSB to completely eliminate perceptible discrete spurious outputs. In a similar manner, 
it is reasonable to conclude that the variation of the filtered noise from one sample time to the 
next must also be at least one LSB in order to be effective for reducing unwanted spurious tones. 
The quantity of interest in this respect is given by 
 

 

        

   

2

2

0

E 2 0

8 sin

Clock d d Clock

d Clock

d t d t T R R T

S f f T df


         

 
 (5.111) 

                                                                 
 
 
48  From From calling u16977_dds_dither4( 8, 20, 1, 1 ). 
49  From From calling u16977_dds_dither4( 8, 20, 1, 10 ). 
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When Sd ( f ) is spectrally white and the lowpass filter bandwidth is much less than FClock, (5.111) 
can be closely approximated by 
 

      22 4
E 2 0

3d Clock c d c ClockT F S F T        (5.112) 

 
where the bracketed quantity is equal to the variance of the filtered noise. Generally speaking, 
the expectation must evaluate to at least one LSB2 in order to be effective for suppressing 
unwanted discrete spurs. This result provides some guidance about how the noise variance and 
the noise filter bandwidth can be traded off against each other to achieve the same amount of 
dithering benefit. Roughly speaking, if the lowpass filter bandwidth Fc is cut in half, the noise 
variance at the lowpass filter output must be increased by about 4× in order to compensate. 
 In general, the complexity involved with using lowpass filtered noise for dithering 
rather than the Nyquist-rate dithering discussed in the previous section is substantial. The most 
egregious difference between the two methods is that the noise must be filtered out at the DAC 
output using a highpass or bandpass filter when the Nyquist-rate method is not used. In most 
cases, using the Nyquist-rate dithering method described in Section 5.10.3 is preferable. 
 

5.11 Noise Shaping Methods for Improved Direct Digital Synthesis 

Noise shaping techniques can be used effectively to improve the output phase noise and spurious 
performance of a direct digital synthesizer.50 This technique was briefly discussed in Section 
7.3.7 and Section 9.3.3 of [7] and several pertinent references were provided [29], [30]. A 
second-order bandpass - method is described in the following section and then subsequently 
applied to higher-order implementations in order to achieve improved noise and spurious 
performance. 

5.11.1 Second-Order Bandstop Noise Shaping 

A second-order - architecture is shown in Figure 5-69. The high precision input xk is truncated 
to M-bits of precision by the quantizer in order to match the resolution of the output D-to-A 
converter. The residual error k is processed by the feedback paths as shown. The quantizer is 
represented as a linear summation involving (presumably) uncorrelated quantization error 
samples qk as discussed in Section 8.3.3 of [6]. In the DDS application where xk = sin(  k ), it is 
assumed the sin(  k ) values are computed with arbitrary precision using CORDIC or other 
equivalent techniques.  
 The noise transfer function Hn( z ) corresponding to Figure 5-69 is given by 
 

     1 2
1 21nH z a z a z        (5.113) 

 
 
and the magnitude is given by 
 
 

                                                                 
 
 
50  See [27] and [28] for a partial introduction to this topic.  
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Figure 5-69 Second-order - modulator used to make up for the finite precision of the M-bit 
DAC 
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 

 

     

      
 (5.114) 

 
where  = 2 f TClock,  f  is the frequency of interest, and TClock is the sampling period. In order for 
this architecture to serve as a tunable bandstop filter, (5.114) must ideally equate to zero at a 
prescribed value of . It so happens that this is nicely obtained by setting a2  1 and choosing 
 

  1 2cos 2 o Clocka f T   (5.115) 

 
in which fo is the center of the desired bandstop characteristic. The resultant noise shaping 
characteristic using (5.114) is given by 
 

      2 2 2
1 14 cos 4cosBH a a      (5.116) 

 
with a1 given by (5.115). 
 To illustrate the effectiveness of this method, assume a 200 MHz sampling rate is used 
along with a 9-bit D-to-A converter, and output frequencies of 41.1 MHz and 21.1 MHz are to be 
synthesized. Figure 5-70 and Figure 5-71 show the resultant spectrums in the case where no 
noise shaping is used (i.e., a1 = a2 = 0). Note the presence of the many high-level spurs even 
though no DAC harmonic distortion has been included here. If the DAC harmonic distortion is 
assumed to be –60 dBc for the 2nd through 7th harmonics, the spurious performance is changed 
from Figure 5-70 and Figure 5-71 to Figure 5-72 and Figure 5-73 respectively. 
 In order to invoke the bandstop noise shaping, a2 is set to 1 and a1 is set to –0.551946 
for the 41.1 MHz case, and set to –1.57645 for the 21.1 MHz case. The noise shaping 
dramatically reduces the spurious tones present and also suppresses the phase noise close to the 
carrier as shown in Figure 5-74 and Figure 5-75 when no DAC harmonic distortion is present. 
 When the same –60 dBc harmonic distortion is present for the DAC 2nd through 7th 
harmonics, however, the principle spurs become readily apparent as shown in Figure 5-76 and 

31 May 2011 James A Crawford www.am1.us



5-62                    Advanced Phase-Lock Applications 

 

Figure 5-77. Although all of the other discrete spurs have been eliminated by the noise shaping, 
the harmonic distortion sets the limit for achievable spurious performance. 
 It is helpful to look at the noise transfer function characteristic (5.116) in greater detail 
before leaving this section and re-write it as  
 

          2 2 24cos 8cos cos 4cosB o oH         (5.117) 

 
in which o corresponds to the angle for the desired frequency null. Sometimes it may be 
convenient to use the gain at dc as a reference gain and it is given by 
 

       2 2 40 4cos 8cos 4 16sin
2
o

B o oH
        
 

  (5.118) 

 
Similarly, the gain at FClock / 2 corresponds to   =  and is given by 
 

      2 2 44cos 8cos 4 16cos
2
o

B o oH
         
 

 (5.119) 

 
By inspection, the only time these two gain functions are equal to each other occurs for o = 90 
which corresponds to FClock / 4. 

 

Figure 5-70 Simple DDS output spectrum51 
for 41.1 MHz. Floating point precision used 
for sin( ) values, 9-bit ideal DAC, sample 
rate of 200 Msps. 

Figure 5-71 Simple DDS output spectrum for 
21.1 MHz. Floating point precision used for 
sin( ) values, 9-bit ideal DAC, sample rate of 
200 Msps. 

 

                                                                 
 
 
51  MATLAB script u16283_dds_noiseshaping.m.  
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Figure 5-72 Spurious result corresponding to 
Figure 5-70 when 2nd through 7th harmonic 
performance is assumed to be –60 dBc for the DAC 

 
Figure 5-73 Spurious result corresponding to Figure 
5-71 when 2nd through 7th harmonic performance is 
assumed to be –60 dBc for the DAC 
 

 
Figure 5-74 Noise shaping based on Figure 5-69 
essentially eliminates the discrete spurious tones 
that are otherwise present in Figure 5-70, other 
conditions remaining constant (i.e., 9-bit ideal 
DAC, 200 MHz sampling rate, 41.1 MHz output) 
 

 
Figure 5-75 Noise shaping based on Figure 5-69 
essentially eliminates the discrete spurious tones that 
are otherwise present in Figure 5-71, other 
conditions remaining constant (i.e., 9-bit ideal DAC, 
200 MHz sampling rate, 41.1 MHz output) 

 
Figure 5-76 DDS output spurious performance52 
corresponding to Figure 5-74 when –60 dBc 
harmonic distortion is present for the 2nd through 7th 
harmonics. The close-in spurious tones are at 35.6 
MHz = 200 MHz – 4 FDDS and 46.6 MHz = 6 FDDS 
– 200 MHz. 

 
Figure 5-77 DDS output spurious performance53 
corresponding to Figure 5-75 when –60 dBc 
harmonic distortion is present for the 2nd through 7th 
harmonics. The first four spurs are simply harmonics 
of the fundamental frequency FDDS = 21.1 MHz.  

                                                                 
 
 
52  MATLAB script u16283_dds_noiseshaping.m. 
53  Ibid. 
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Since there is only one design parameter o, it is straight forward to create a set of 
attenuation curves as shown in Figure 5-78. The frequencies ( denoted here by  ) at which the 
noise transfer function power-gain is numerically equal to   ( < 1 ) are given by 

 

  1cos cos
4o
   

  
 

 (5.120) 

 
and the range of legal arguments ( o,  ) is clearly restricted since the arc-cosine is only defined 
for arguments with a magnitude less than or equal to unity. In general, it is necessary that 
 

  1 cos 1
4 4o

       (5.121) 

for the result to be defined. 
 

 
Figure 5-78 Noise transfer function54 (5.117) for a range of o values 
 

5.11.2 Fourth-Order Bandstop Noise Shaping 

Given the earlier results represented by (5.113) and (5.115), it is relatively easy to extend the 
noise shaping technique to a wider band of stopband frequencies. In order to do this, assume the 
DDS output frequency is again represented by the radian angle o and the stopband nulls are 
positioned at 1 = o –  / 2 and 2 = o +  / 2. The lower frequency second-order noise 
shaping function is realized using (5.113) with a2  1 and a1 computed with (5.115) using 1. A 
second noise transfer function denoted by  

                                                                 
 
 
54  MATLAB script u16283_dds_noiseshaping.m.  
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   1 2
1 21nH z b z b z     (5.122) 

 
is similarly computed using 2. The cascade of noise transfer functions is then assembled as 
 

 
    1 2 1 2

1 2 1 2

1 2 3 4
1 2 3 4

1 1

1

casH z a z a z b z b z

c z c z c z c z

   

   

    

    
 (5.123) 

where 

 

1 1 1

2 2 2 1 1

3 1 2 2 1

4 2 2

c a b

c a b a b

c a b a b

c a b

 
  
 


 (5.124) 

and  
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1

1

1
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o

o

a b

a

b

 

 

 

  

   

 (5.125) 

 
The associated block diagram is given by Figure 5-79 and representative results are shown in 
Figure 5-80 and Figure 5-81. Selecting the separation parameter  involves a tradeoff between 
the stopband noise level and the bandwidth of the stopband region. In this first pair of results,  
was chosen to correspond to 2.5 MHz whereas in the second pair of results shown in Figure 5-82 
and Figure 5-83, the stopband width has been doubled at the expense of the stopband depth.  
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Figure 5-79 Fourth-order - modulator used to make up for the finite precision of the M-bit 
DAC 
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Figure 5-80 4th-order - noise shaping result55 
based upon (5.123). 200 MHz clock rate, 41.1 MHz 
output signal, 9-bit ideal DAC,  corresponded to 
2.5 MHz.  

 
Figure 5-81 4th-order - noise shaping result56 based 
upon (5.123). 200 MHz clock rate, 21.1 MHz output 
signal, 9-bit ideal DAC,  corresponded to 2.5 MHz. 

 
Figure 5-82 4th-order - noise shaping result57 
based upon (5.123). 200 MHz clock rate, 41.1 MHz 
output signal, 9-bit ideal DAC,  corresponded to 5 
MHz. 

 
Figure 5-83 4th-order - noise shaping result58 based 
upon (5.123). 200 MHz clock rate, 21.1 MHz output 
signal, 9-bit ideal DAC,  corresponded to 5 MHz. 

5.11.3 Sixth-Order Bandstop Noise Shaping 

It is a simple matter to extend the results of the previous sections to a 6th-order noise shaping 
solution by cascading three second-order sections to form the noise transfer function 
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 (5.126) 

 
In this form, the ek are given by 

                                                                 
 
 
55  MATLAB script u16283_dds_noiseshaping.m.  
56  MATLAB script u16283_dds_noiseshaping.m.  
57  MATLAB script u16283_dds_noiseshaping.m.  
58  MATLAB script u16283_dds_noiseshaping.m.  
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 (5.127) 

with  
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and 
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 (5.129) 

 
The associated block diagram is just an extension of Figure 5-79 to accommodate the additional 
two taps.  
 A representative output spectrum for the 6th-order case is shown in Figure 5-84 where 
the noise transfer function nulls have again been positioned 5 MHz above and 5 MHz below the 
desired signal at 41.1 MHz. The wider stopband region makes it that much easier for a 
subsequent PLL or narrow bandpass filter to suppress the shaped noise further away from the 
desired signal. 

 
Figure 5-84 Sixth-order bandstop noise shaping example synthesizing 41.1 MHz with sampling 
rate = 200 MHz and 9-bit ideal DAC. Design parameters were chosen as 1 = o – , 2 = o, 
and 3 = o + , with  corresponding to 5 MHz. 
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5.11.4 - Summary 

A summary of the DDS examples just presented is provided in Figure 5-85. Many variants of the 
techniques presented in this section are possible. While these techniques can be very effective in 
suppressing quantization-related spurious signals, they do nothing to suppress spurious signals 
which arise from DAC-related harmonic distortion. Once these harmonic distortion terms are 
aliased by the underlying DAC sampling process, they can produce spurious signals that fall 
within the stopband region. The most effective remedies to harmonic distortion related problems 
are good frequency planning as discussed in Section 5.4 and using a low-distortion DAC in the 
first place.  
 
Summary of Examples: FClk= 200 MHz, 9-Bit Ideal DAC 
 

2nd-Order Section: 41.1 MHz Output ( Figure 5-74 ) 
[ a1, a2 ] = ( –0.5519, 1 ) 

2nd-Order Section: 21.1 MHz Output ( Figure 5-75 ) 
[ a1, a2 ] = ( –1.5765, 1 ) 

4th-Order Section: 41.1 MHz Output, 2.5 MHz Spacing ( Figure 5-80 ) 
[ a1, a2 ] = ( –0.7011, 1 ) 
[ b1, b2 ] = ( –0.3994, 1 ) 
[ c1, c2, c3, c4 ] = ( –1.1005, 2.2800, –1.1005, 1) 

4th-Order Section: 21.1 MHz Output, 2.5 MHz Spacing ( Figure 5-81 ) 
[ a1, a2 ] = (–1.6682, 1 ) 
[ b1, b2 ] = (–1.4750, 1 ) 
[ c1, c2, c3, c4 ] = (–3.1432, 4.4606, -3.1432, 1) 

4th-Order Section: 41.1 MHz Output, 5 MHz Spacing ( Figure 5-82 ) 
[ a1, a2 ] = (–0.8459, 1 ) 
[ b1, b2 ] = (–0.2444, 1 ) 
[ c1, c2, c3, c4 ] = (–1.0903, 2.2068, –1.0903, 1 ) 

4th-Order Section: 21.1 MHz Output, 5 MHz Spacing ( Figure 5-83 ) 
[ a1, a2 ] = (–1.7496, 1 ) 
[ b1, b2 ] = (–1.3645, 1 ) 
[ c1, c2, c3, c4 ] = (–3.1141, 4.3873, –3.1141, 1 ) 

6th-Order Section: 41.1 MHz Output, 5 MHz Spacing ( Figure 5-84 ) 
[ a1, a2 ] = (–0.8459, 1 ) 
[ b1, b2 ] = (–0.2444, 1 ) 
[ c1, c2 ] = (–0.5519, 1 ) 

[ e1, e2, e3, e4, e5, e6 ] = (–1.6422, 3.8085, –3.3986, 3.8085, –1.6422, 1 ) 
Figure 5-85 Summary of - examples presented in this section  
 

5.12 Hybrid PLL-DDS Systems 

Gilmore received a patent59 for a PLL driven by a DDS in 1990 [31]. The original configuration 
is shown in Figure 5-86. The benefits of using a variable modulus divide-by-M block as 
discussed in Section 5.9 to avoid DAC-related harmonic distortion spurs were not realized until 

                                                                 
 
 
59  A subsequent related patent was also awarded to Gilmore in 1992 [31], [32]. 
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some time later. The PLL in Figure 5-86 made it possible to synthesize relatively clean RF 
signals at frequencies well beyond the DDS capabilities of the time. 
 The DDS / PLL configuration shown in Figure 5-86 is, however, hampered by the 20 
Log10( N / M ) dB increase in DDS-related spurious levels at the PLL output. One alternative to 
circumvent this issue is to use a dual-channel DDS to create a fine-resolution frequency offset 
which is used with a single-sideband mixing operation as shown in Figure 5-87. The increase in 
circuit complexity is, however, substantial. Careful frequency planning is required in this 
configuration to ensure that leakage of the VCO signal or the unwanted sideband mixing product 
into the divide-by-N block input does not result in close-in spurious terms due to sampling 
effects associated with the divider. 
 

 
Figure 5-86 DDS-PLL hybrid configuration patented by Gilmore [31] 
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Figure 5-87 Alternative DDS-PLL hybrid that does not suffer from 20 Log10( N ) spurious 
enhancement but does involve considerably more complexity than Figure 5-86 
 
 A simplified variant of the method shown in Figure 5-87 can prove useful for 
navigating around troublesome integer-boundary spurs which can occur in fractional-N PLLs. 
The only other way to avoid these spurs is to have more than one reference frequency available 
to the fractional-N PLL and appropriately select between them. The boundary spur problem is 
addressed more completely in Section 12.3. 
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5.14 Appendix 5-1: Noise Spectrum Associated with Random Phase Truncation Errors 

The phase errors associated with phase truncation are generally periodic in nature as discussed at 
length in Section 5.5.2. If, however, the phase truncation errors are truly random, the simplified 
analysis discussed in this section can be applied.   

If an average noise floor is computed based upon the phase truncation errors being 
uncorrelated as in the following section, it is quickly seen that the discrete spurs completely 
dwarf the computed average noise floor level. In Figure 5-17 and Figure 5-18, for example, the 
so-called average noise floor associated with phase truncation is at about –135 dBc which is 
completely masked by the high spurious levels present. A simple derivation for the average noise 
floor associated with phase truncation, assuming that the error terms are random, is given in the 
section to substantiate this important point. 

Consider a continuous-time signal that is given by 
 

    sin o nr t t t      (5.130) 

 
This can be easily expanded as 
 

          sin cos cos sino n o nr t t t t t            (5.131) 

 
Assuming that |n( t )| << 1 radian, (5.131) can be closely approximated by 
 

        sin coso n or t t t t     (5.132) 

 
Assume now that the phase term is a simple sinusoidal function with a peak phase deviation of p 
radians and radian frequency of m. This assumption makes it easy to rewrite (5.132) as 
 

         sin sin sin
2

p
o o m o mr t t t t


                (5.133) 

 
The relative level of each sideband term at  m rad/sec offset is clearly 
 

 1020log dBc
2

p
SideL

 
  

 
 (5.134) 

Taking this result one step further, if RMS is the RMS phase noise (in radians) in a 1 Hertz 
bandwidth at the same offset frequencies as represented by (5.133), the corresponding phase 
noise level is 

 1020 log dBc/Hz
2

RMS
phsL

   
 

 (5.135) 

 
 Assume now that n( t ) in (5.130) represents the phase quantization noise present in an 
NCO due to finite phase truncation. The discrete-time output of the NCO can be written as 
 

  sink o Clock nr kT k      (5.136) 
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Assume that the phase quantization phase noise is uniformly distributed across one LSB [ – / 2, 
 / 2 ]  and that its corresponding variance is given by 
 

 
2

2 2rad
12


  (5.137) 

 
The corresponding one-sided power spectral density for n is uniformly spread from 0 Hz to 
FClock / 2 Hz with a level of 

 
2

22
rad / Hz

12q
Clock

L
F


  (5.138) 

 
Assume that the 2W available phase steps are uniformly spread across the range [0, 2) in which 
case 

 12 2 2 radW W       (5.139) 

 
The power spectral density of n is then given by 
 

 

2 2 2
2 12 1 rad

2
2 6 3 Hz

W
W

Clock

P
F

      
 

 (5.140) 

 
Based upon the earlier result given by (5.135), the resultant quantization-related phase noise 
floor of (5.136) is given by 
 

 

 

2
2

10

2

10

10

10log 2
3

6.02 10log
3

dBc
6.02 5.17 10log

Hz

W

Clock

Clock

Clock

F

W
F

W F





 
  

 
 

    
 

   



 (5.141) 

 
 This result is only meaningful if the phase truncation errors are truly random. Because 
of the cyclical nature of the error process, however, this is not the case. A close-up of the noise 
spectrum shown in Figure 5-17 reveals that the low-level spectral terms are all discrete line-
spectrum terms as shown in Figure 5-88. It is therefore somewhat meaningless to talk about an 
average noise floor due to phase truncation because the spectrum is always a discrete-line 
spectrum. 
 Some applications will be indifferent about whether the spectrum floor is a continuous 
noise spectrum or actually composed of discrete spectral lines whereas others may not be. 
Carrying more bits of precision will reduce the amplitude of the discrete lines of course, but not 
the discrete line nature of the spectrum. Phase dithering as discussed in Section 5.10.2 and noise-
shaping as discussed in Section 5.11 are very effective methods for eliminating low-level 
discrete spurious lines like these in the output spectrum. 
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Figure 5-88 Close-up of Figure 5-17 reveals that the low-level spectrum is composed of a comb 
of spurious terms rather than a uniform flat noise spectrum. The average noise level is based 
upon (5.141).  
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