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RF systems-level designers frequently have a need to incorporate continuous-
time elements like RF filters and phase-locked loop related analog circuitry into 
their simulations. These simulations are frequently done in MATLAB, 
SIMULINK, or C/C++. Compiled solutions are most attractive for time-intensive 
analyses efforts (e.g., Monte-Carlo technique). 
 Many designers do not have access to higher level design tools (e.g., 
ADS, Cadence) which provide convenient behavioral models for such blocks. In 
such cases, the designer must frequently come up with their own set of state-
equations which are then solved as a set of simultaneous differential (or 
difference) equations. Formulating these equations is both tedious and prone to 
error. 
 This paper presents a convenient means to assemble the underlying 
discrete-time solution to such problems based upon straight-forward matrix 
techniques. This formulation can be implemented in the designer’s analysis tool 
of choice.  
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1 Problem	Statement	
 
The simple circuit example shown in Figure 1 will be used to illustrate the 
underlying problem being addressed. The voltage transfer function for this 
simple network is given by1 
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 outv t
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Figure 1 RLC example circuit 
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This transfer function is normally written in its standard form as 
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with  2 1/n RC  . The associated time-domain unit-step response is given 

by 
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With the additional constraint 1  . All too often, engineers numerically 

approximate time derivatives of a state variable u as 
 

   u t h u tdu
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 
   (5) 

 

                                                      
1  From §8.2 of [1]. 
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using a relatively small time increment h and then formulate a discrete-time 
solution based upon this approximation. While appearing quite simple, this 
method (known as the forward Euler method2) is poorly conditioned from a 
stability standpoint and is also rather imprecise.  
     Many excellent references are available which address numerical 
integration, but the primary emphasis in this paper is the incorporation of the 
time-domain solution into a simplified matrix solution. In pursuing this objective, 
three well-known numerical integration algorithms will first be introduced. Each 
technique will then be incorporated into a matrix-based solution of Figure 1 
which can be easily modified for arbitrarily large circuit applications. 
 The state-equations associated with (3) can be written as 
 

21
1 2

2
1

2 2n n n

du
u u

dt
du

u
dt

     


  (6) 

 
This pair of equations is not difficult to formulate whereas the formulation for a 
more complicated schematic like Figure 2 would obviously be much more 
involved. 
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Figure 2 Second circuit example with much greater complexity than Figure 1 

2 Numerical	Integration	Methods	
 
The four numerical integration methods considered in this paper are 
 

 Forward Euler 
 Backward Euler 
 Trapezoidal  
 2nd-Order Gear 

2.1 Forward	Euler	
 
In the forward Euler case, time derivatives are approximated as given by (5). 
More explicitly for the integration case, 

                                                      
2  Also known as the first-order Adams-Bashforth method. 
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Figure 3 Simplistic representation for a discrete-time integration block where 

1k kt t h    

1k k ky y hx     (7) 

 
This simple form is used fairly frequently as an ad-hoc method. Other methods 
are much better as developed herein. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.2 Algorithm	Stability	
 
In the case of a multistep numerical integration algorithm, numerical stability 
can be assessed by considering the first-order initial value problem given by  
 

dy
y

dt
    (8) 

 
where y(0) = 1 is assumed. In terms of discrete-time samples, (8) is given by 
 

k ky y    (9) 

 

Substituting (9) into (7) where by definition k ky x  results in  
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where h is a suitably small time increment. This is easily reorganized as 
 

 1 1k ky y h     (11) 

 
This result can be rewritten as 
 

1 1k

k

y
h

y
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from which it is easy to conclude that the solution geometrically increases 

without bound of 1 1h  . Denoting h u jv   , the solution consequently 

diverges for 
 
 



  5 of 30 
 
Time Domain Simulation  Numerical Integration Methods 

5 of 30  AM1 LLC 
www.am1.us 

 2 21 1u v     (13) 

 
which corresponds to the exterior of a unit-circle centered at the point (1,0) as 
shown in Figure 4. The numerical precision of this method is compared to the 
other methods later. 

 
Figure 4 Stability regions for forward Euler methodii 

 In the more systematic stability analysis approach is needed to address 
the general case. A multistep numerical integration algorithm can be written as 
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The multistep algorithm is said to be absolutely stable3 for those values of h  
for which the 1p   roots of the characteristic equation lie within or on the unit 

circle 1z  . Returning to (11), the difference in time sample index is handled 

by making use of the unit time-delay operator 1z which translates (11) into 
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The characteristic equation is given by the quantity within the parenthesis as 
 

  1P z z h     (16) 

 

The single root of  P z  is given by 

                                                      
3  From §13.1 of [2]. 
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 1z h    (17) 
 
and so long as this root lies within the unit circle, the forward Euler formula will 
be stable. This characteristic function method is used to assess stability for the 
trapezoidal and 2nd-order Gear methods as well. 
 

2.3 Backward	Euler	Method	
 
The backward Euler method is almost identical to the forward Euler method (7) 
except for a difference in the time index. This small difference is extremely 
important, however, thereby creating an implicit integration formula rather than 
an explicit formula like the forward Euler method.  This integration formula is 
given by 
 

1 1k k ky y hx     (18) 

 
 Algorithm stability in the context of the first-order differential equation 
given (8) transforms (18) into 
 

 1 1k k ky y h y      (19) 

 
from which it follows 
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This result shows that the method is stable so long as 1 1h   which 

corresponds to the exterior of the unit-circle shown in Figure 5. 
 

 
Figure 5 Stability regions for backward Euler methodiii 
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2.4 Trapezoidal	Method	
 
The trapezoidal integration method for a discrete-sample input xk is given by 
 

1
1 2

k k
k k

x x
y y h




    (21) 

 

Denoting a unit-sample time-delay h by 1z , (21) can be rewritten as 
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In the Laplace transform domain,    / 1/y s x s s  since the purpose of (21) 

is to mimic an ideal integrator as far as possible. Based upon this and (22), the 
trapezoidal method approximates the Heaviside operator s as 
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This is none other than the well-known bi-linear transform relationship that 
frequently occurs in digital signal processing. 
 The stability of this method can be assessed in the same way as done 
previously for the forward and backward Euler methods. From (8), 
 

k k ky y x     (24) 

 
and using this in (21) produces 
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The magnitude of the right-hand side of (26) must be < 1 in order to have a 

stable result. This condition is satisfied so long as  Re 0h   which 

corresponds to the entire right half-plan of Figure 4. The stability region for 
trapezoidal integration is consequently much larger than for the forward Euler 
method. 
 Looking at the trapezoidal method’s stability by way of the 
characteristic function approach, (21) is the starting point. Making use of the 
unit time-delay operator in (21) along with (24) results in  
 

1 0
2 2

h h
y z z
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  (27) 

 
and the solution to the characteristic equation is given by 
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h
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
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  (28) 

 
which gives the same stability / instability regions as found above. 

2.5 2nd‐Order	Gear	
 
The 2nd-order Gear numerical integration formula is given by 
 

 1 0 1 1 1 1k k k ky a y a y hb y         (29) 

 

where 0 4 / 3a  , 1 1/ 3a   , and 1 2 / 3b  . In considering the stability of 

this method in the context of (8), 1 1k ky y    which transforms (29) into 
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Using 1z to represent a unit time-delay once more transforms (30) into 
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The integration formula will be unstable for values of h for which the 
bracketed quantity is zero for z anywhere on the unit-circle, or equivalently for 
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Figure 6 Stability region for 2nd-order Gear methodiv 

 
 

3 Numerical	Precision	
 
The starting point for this discussion is the set of two simultaneous differential 
equations given earlier (6) which are repeated here for convenience. 
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3.1 Forward	Euler	Case	
 
The associated integration formula was given earlier for this case as (7). This 
equation can be arranged into the differential equation form as 
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Straight forward algebraic arrangement results in the convenient form 
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3.2 Backward	Euler	Case	
 
This numerical method has not been mentioned until now, but will serve useful 
for later comparisons. This integration formula is given by 
 

1 1k k ky y hx     (37) 

 
The discrete-time solution to (33) using this integration formula is 
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  (38) 

 
This result can be iterated to compute the impulse response represented by 
(33) using the backward Euler method. 
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3.3 Trapezoidal	Case	
 
The associated integration formula was given earlier for this case as (21). This 
can be rearranged as 
 

 1 1

2
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Using this formula along with (33) can be used to create the discrete-time 
solution 
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This result can be iterated to compute the impulse response represented by 
(33) using the trapezoidal method. 
 

3.4 2nd	Order	Gear	Case	
 
The associated integration formula was given earlier for this case as (29). This 
can be arranged as 
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The resultant discrete-time solution is 
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 3.5 Comparison	of	Results	

 
The computed impulse responses for several different time-steps are shown in 
Figure 7 through Figure 9. The nearly unstable behavior of the forward Euler 
method for the coarse time-step used in Figure 7 should serve as a good 
reminder to avoid using this integration method in general. It is admittedly a bit 
unfair to compare the first-order methods (forward & backward Euler) with the 
second-order methods (trapezoidal & 2nd-order Gear) but this too is done to 
emphasize why the 2nd order methods are to be preferred.  
 

 
Figure 7 Comparison of results for a very coarse time-step t = 0.10 sec 

 
 

Figure 8 Comparison of results for a time-step t = 0.05 sec 
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Figure 9 Comparison of results for a time-step t = 0.01 sec 

 It is worthwhile to compare the results relative to the ideal response 
given by (4). In general, numerical integration algorithms introduce a small time 
delay compared to the ideal response. Normally this delay is a true time-delay 
but in some cases it may be a small time advance as well. The trapezoidal and 
2nd-order Gear results are compared to a time-advanced version of the ideal 
response in Figure 10, a time-delayed version in Figure 11, and no time 
adjustment to the ideal response in Figure 12. At least for this particular 
impulse response and t value, the 2nd-order Gear appears to be shape-
preserving as evidenced by Figure 10. 
 

 
Figure 10 Comparison of results with respect to ideal where the ideal result has 
been advanced in time by t/2 
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Figure 11 Comparison of results with respect to ideal where the ideal result has 
been delayed in time by t/2 

 
Figure 12 Comparison of results with respect to ideal where the ideal result has 
neither been delayed or advanced in time 

 The trapezoidal and 2nd-order Gear methods are both desirable 
methods to use. The specific choice depends in part on how easy the discrete-
time equations are formulated for actual circuits. This is the topic of the next 
section. 
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In small over-sampling situations (e.g., sampling rate < 20x the maximum 
frequency present in the circuit), the 2nd-order Gear method should give 
better results than the trapezoidal method. For higher over-sampling ratios, 
both methods will perform quite well. 
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4 Discrete	Time	Circuit	Equivalents	
 
This section develops the implementation details for discrete-time simulation of 
analog circuits using the preferred trapezoidal and 2nd-order Gear methods. 
Each of these methods will be developed separately. 

4.1 Trapezoidal	Method	
 
In the case of an ideal capacitor, the defining relationship is 
 

dV
i C

dt
   (43) 

 
where the polarities are as shown in Figure 13. The trapezoidal integration 
method represents a time derivative as given by (39). Combining these two 
equations produces 

i V

 
 

Figure 13 Basic capacitor with current direction and voltage polarity shown 
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 (44) 

 
This result can be re-cast as an equivalent circuit as shown in Figure 14. 

2

h
R

C


1kV 

2
k k

C
V i

h

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Figure 14 Companion model for ideal capacitor based upon the trapezoidal 
numerical integration formula 

 The same type of formulation can be created for an ideal linear 
inductor. Starting with the voltage and current polarities shown in Figure 15 and 
 
 



  16 of 30 
 
Time Domain Simulation  Appendix 

16 of 30  AM1 LLC 
www.am1.us 

 i

V  
 

Figure 15 Ideal linear inductor  

the fundamental relationship for inductors given by 
 

di
v L

dt
   (45) 

 
the trapezoidal integration formula (39) can be combined as 
 

 
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1
1 1

1 1

2

0
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k k
k k k k

k k k k

di di L
L i i V V

dt dt h

h
V V i i

L


 

 

      
 

    

  (46) 

 
with the equivalent circuit representation shown in Figure 16. 

2L
R

h


+ _
1kV 

2 k k

h
V i

L


1ki 

 
Figure 16 Companion model for ideal inductor based upon the trapezoidal 
numerical integration formula 

 These results may look somewhat complicated, but they permit an 
arbitrary circuit of resistors, capacitors, and inductors to be represented in the 
time domain as a fixed array of conductances driven by current sources thereby 
making matrix-based iterative computations very straight forward as will be 
shown shortly. 
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4.2 2nd‐Order	Gear	Method	
 
The discrete-time formula associated with an ideal capacitor is given b 
 

 1 0 1 1 1
11

k k k k
k

C dV
V a V aV C i

hb dt  


     (47) 

 
This result can be cast into the equivalent circuit model shown here in Figure 
17 where the proper substitutions for the Gear coefficients ( a0, a1, b–1) have 
been made. 

2

3

h
R 

1kV 

1

2

2k k

C C
V V

h h 

1ki 

 
Figure 17 2nd-order Gear companion circuit model for an ideal capacitor C 

 For an ideal inductor, the 2nd-order Gear integration formula results in  
 

 1 0 1 1 1
1

k k k k

di L
L i a i a i V

dt hb   


      (48) 

 
This result can be cast into the equivalent circuit model shown here in  
 

1

L
R

hb


1kV 

0 1 1k ka i a i 

1ki 

 
Figure 18 2nd-order Gear companion circuit model for an ideal inductor L 

 



  18 of 30 
 
Time Domain Simulation  Appendix 

18 of 30  AM1 LLC 
www.am1.us 

4.3 Companion	Model	Summary	
 
The previous results are summarized in Table 1. The information storage 
requirements tend to favor the trapezoidal method in that they are the same for 
both capacitors and inductors. A bit more organization is required in using the 
2nd-order Gear method. 
 
Table 1 Companion Model Summary for L’s and C’s 
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5 Arbitrary	Circuit	Matrix	Formulation	
 
The previous material makes it straight forward to finally capture an arbitrary 
circuit in matrix form to perform time domain simulation. A nodal circuit analysis 
will be used based node voltages and admittances. The trapezoidal integration 
formula will be used in the examples which follow. The node voltages and 
currents are related by the classical formulation 
 

yV i   (49) 

 
Step #1: Sequentially number the circuit’s nodes 

 inv t

 outv t
R

C L

 
Figure 19 First example problem with nodes numbered sequentially 

Step #2: Replace voltage sources by their equivalent Norton current 
sources 

 in

src

v t

R

 outv t
R

C L

srcR

 
Figure 20 Ideal voltage sources replaced with Norton current-source 
equivalents (here Rsrc simply made << R) 

Step3: Replace all C’s and L’s by their respective companion model 
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Figure 21 Use of companion models transforms the original circuit into a circuit 
composed of only resistors and current sources 
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Step 4: Assemble the admittance matrix y( ) for the circuit 
 
There are only two circuit nodes shown in the example circuit (Figure 21) and 4 
resistors. For a given resistor 1/R g  connected between nodes p and q, the 

matrix additions are as follows: 
 

   
   

   
   

, ,

, ,

, ,

, ,

y p p y p p g

y q q y q q g

y p q y p q g

y q p y q p g

 

 

 

 

  (50) 

 
For passive circuit elements (R, L, C), this pattern is always the same and is 
easily repeated for each circuit element. In cases where p or q is zero 
(corresponding to ground), the only one of the four equations above will be 
affected corresponding to the non-zero node index. 
 The resultant admittance matrix associated with Figure 21 is given by 
 

1 1 1

1 1 2

2

srcR R R
y

C h

R R h L

         
   

               

  (51) 

 
 Note that this matrix will be unchanged for every time-step iteration! 
The inverse of the y-matrix will also be constant for every time-step as well. 
 
Step 5: Formulate the current source vector associated with the nodes 
 
Any external current flowing into a circuit node is considered to be negative 
whereas currents flowing out are positive quantities. It is crucial that this 
convention be strictly adhered to.  
 There are 3 current sources shown in Figure 21. Only nodal currents 
associated with non-ground nodes must be kept track of. The current source 
vector is given by 
 

1 2

2
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k k k k

in

src
src

out C out L

v

R
i

C h
v i v i

h L



 
 
 
          
    

 (52) 

 
where the C and L subscripts denote capacitor and inductor currents 
respectively. Aside from computing the inverse of the y-matrix in (51), the 

iterative computational process can now commence as 1
1 kk srcV y i
  . 
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 The MATLAB script used to iteratively compute the circuit’s response is 
given in Figure 24 with the results shown in Figure 22 and Figure 23 for two 
different time-steps.  

 
Figure 22 Ideal analytical solution (4) compared with matrix-based solution 
using Figure 21 with t = 0.10 sec 

 
Figure 23 Ideal analytical solution (4) compared with matrix-based solution 
using Figure 21 with t = 0.01 sec 

5.1 A	More	Complicated	Example	
 
While the simple example just considered is insightful, a more complicated 
circuit is needed in order to illustrate the MATLAB script formulation more 
clearly. To this end, consider the complete PLL circuit shown in Figure 25. 
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Figure 24 MATLAB script used to compute the responses in Figure 22 and 
Figure 23 using the trapezoidal-based companion models 
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Figure 25 Complete PLL circuit including additional LC elliptic filter and 
nonlinear sinusoidal phase detector 

In this figure, additional steps must be taken to transform it into an equivalent 
circuit that is easily describable using an admittance matrix. These steps are 
illustrated in Figure 26 where 
 

1. Voltage output of the op-amp has been transformed into a Norton-
equivalent current source; 

2. The VCO is recognized as an ideal integrator of phase which has been 
replaced by a scaled ideal integrator of current which is mathematically 
equivalent; 

3. The output of the phase detector has also been converted to an 
equivalent Norton source (but not explicitly shown in the schematic) 

 

Rsrc= 0.01;
R= 10; 
L= 0.80; 
C= 1.0/( (1*2*pi)^2 *L ); 
dt = 0.01; 
ymat= [ (1/Rsrc + 1/R) (-1/R); (-1/R) (1/R + (2*C)/dt + dt/(2*L)) ]; 
yinv= inv(ymat); 
vk= 0.0; 
ick= 0.0; 
ilk= 0.0; 
  
npts= 5100; 
vin= ones(1,npts); 
vout= zeros(1,npts); 
for ii=1:npts 
    isrc= [ vin(ii)/Rsrc, (2*C*vk/dt+ick)-(dt*vk/(2*L)+ilk)]'; 
    vnodes= yinv*isrc; 
     
    ick= -(2*C*vk/dt + ick); 
    ilk= dt*vk/(2*L) + ilk; 
     
    vk= vnodes(2);      
  
    ick= ick + vk*2*C/dt; 
    ilk= ilk + vk*dt/(2*L); 
     
    vout(ii)= vk; 
end 
tm= (0:npts-1)*dt; 
p1= plot( tm, vout, 'r' ); 
set( p1, 'LineWidth', 2 ); 
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Figure 26 Modified PLL schematic incorporating Norton equivalent circuit for 
the op-amp output and an additional capacitor Cvco as an ideal integrator of 
phase 

 Note that the op-amp in Figure 26 has been replaced by an equivalent 
transconductance amplifier having an output impedance of Rop. The 
transconductance stage is the only non-passive element in the schematic, and 
compared to the MATLAB admittance formulation described by (50), results in 

a non-symmetric matrix entry where  4,2 op

op

g
y

R
 . The MATLAB script for 

this schematic is provided in the Appendix. A few example transient responses 
are shown in Figure 27 through Figure 29. 
 
 

 
Figure 27 Phase error transient response of the PLL for an initial frequency-
step of 6 kHz. Loop natural frequency = 5 kHz with damping factor of 0.707. 
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Figure 28 Increasing the initial frequency error to 7 kHz results in a cycle-slip 
(360o) as shown compared to Figure 27 

 
Figure 29 Increasing the initial frequency error to 9 kHz results in more cycle-
slipping (1080o) as shown compared to Figure 27 

5.2 In	Summary	
 
Modeling arbitrary analog and or mixed-signal circuitry in the time domain using 
MATLAB (or other similar tools like C++) is relatively straight forward using 
companion models and an admittance matrix. The trapezoidal or 2nd-Order 
Gear integration formulas are preferred for their precision versus complexity.  
 Creation of the admittance matrix follows a very structured formula as 
described earlier and can be done by visual inspection with a little practice. The 
current source vector assembly requires a bit more care perhaps, but is equally 
straight forward with some experience. This technique provides an accurate 
means to capture continuous-time circuit behavior when needed for embedded 
systems-related analysis. 
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7 Appendix:	
%==================== u23915_timedomain_pll.m =========================== 
% 
%   Example time-domain simulation case based upon 
%   trapezoidal companion circuit models 
% 
disp( ' ' ); 
disp( ' ' ); 
Kd= 1;                  % Phase detector gain, V/rad 
Kvco= 2*pi*10000;       % VCO gain, rad/sec/V 
fn= 5e3;                % Desired natural frequency, Hz 
wn= 2*pi*fn; 
zeta= 0.707;            % Desired damping factor 
% 
%   Loop time constant 
% 
loop_tau= 1/(wn*zeta); 
% 
%   Do simulation for 25 time constants 
% 
tsim= 25*loop_tau; 
% 
% 
%   Simulation time increment 
% 
dt= 0.01/fn; 
disp( ['Sampling rate = ' num2str(1/dt)] ); 
npts= floor( tsim/dt ); 
tm= (0:npts-1)*dt;      % Time axis 
  
tau1= Kd*Kvco/wn^2; 
tau2= 2*zeta/wn; 
% 
% Resistance level for R1 is arbitrary in this example 
% 
R1=1e3; 
C1= tau1/R1; 
R2= tau2/C1; 
disp( ['C1 (pF)= ' num2str(C1*1e12) ' R1 = ' num2str(R1)] ); 
disp( ['R2 = ' num2str(R2) ] ); 
% 
%   Situate 5th order elliptic filter at 100 kHz 
%   Pick 20 degree 5% reflection coefficient filter 
% 
%   Normalized RLC quantities are: 
% 
R3= 1.0; 
C2= 0.3419; 
C3= 1.2080; 
C4= 1.1545; 
C5= 0.0462; 
C6= 0.0833; 
L1= 0.9108; 
L2= 1.2782; 
% 
%   Scale the normalized elliptic filter RLC's to 
%   1 kOhms and a ripple bandwidth of 25 kHz 
% 
Rscale= 1000; 
Fscale= 2*pi*25e3; 
% 
R3= R3*Rscale; 
C2= C2/Rscale/Fscale; 
C3= C3/Rscale/Fscale; 
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C4= C4/Rscale/Fscale; 
C5= C5/Rscale/Fscale; 
C6= C6/Rscale/Fscale; 
L1= L1*Rscale/Fscale; 
L2= L2*Rscale/Fscale; 
% 
%   Arbitrarily choose Cvco 
%   Simply used for scaling within the mathematical model 
% 
Cvco= 1e-6; 
% 
%   Choose Op-Amp parameters 
% 
Rop= 0.01;      % Op-amp's output impedance, Ohms 
gop= 1000;      % Assumed transconductance for op-amp 
% 
%   Choose Norton equivalent output resistance for phase detector 
% 
Rpd= 0.1; 
% 
%   Add in shunt resistor across C1 
% 
Rsh= 1e7;           
%- - - - - - - - - - - - - - - - - - - - - - - - - - - -  
% 
%   Set up admittance matrix 
%   Does not change during iterations 
% 
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - 
ymat= zeros(8,8); 
% 
%   Output impedance of phase detector 
% 
ymat(1,1)= ymat(1,1) + 1/Rpd; 
% 
%   Entries for R1 
% 
ymat(1,1)= ymat(1,1) + 1/R1; 
ymat(2,2)= ymat(2,2) + 1/R1; 
ymat(1,2)= ymat(1,2) - 1/R1; 
ymat(2,1)= ymat(2,1) - 1/R1; 
% 
%   Entries for R2 
% 
ymat(2,2)= ymat(2,2) + 1/R2; 
ymat(3,3)= ymat(3,3) + 1/R2; 
ymat(2,3)= ymat(2,3) - 1/R2; 
ymat(3,2)= ymat(3,2) - 1/R2; 
% 
%   Entries for R3 
% 
ymat(4,4)= ymat(4,4) + 1/R3; 
ymat(5,5)= ymat(5,5) + 1/R3; 
ymat(4,5)= ymat(4,5) - 1/R3; 
ymat(5,4)= ymat(5,4) - 1/R3; 
% 
%   Output impedance of op-amp 
% 
ymat(4,4)= ymat(4,4) + 1/Rop; 
% 
% Rsh 
% 
ymat(3,3)= ymat(3,3) + 1/Rsh; 
ymat(4,4)= ymat(4,4) + 1/Rsh; 
ymat(3,4)= ymat(3,4) - 1/Rsh; 
ymat(4,3)= ymat(4,3) - 1/Rsh;
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% 
%   Capacitor C1 trapezoid companion model 
% 
ymat(3,3)= ymat(3,3) + 2*C1/dt; 
ymat(4,4)= ymat(4,4) + 2*C1/dt; 
ymat(3,4)= ymat(3,4) - 2*C1/dt; 
ymat(4,3)= ymat(4,3) - 2*C1/dt; 
% 
%   Capacitor C2 
% 
ymat(5,5)= ymat(5,5) + 2*C2/dt; 
% 
%   Capacitor C3 
% 
ymat(6,6)= ymat(6,6) + 2*C3/dt; 
% 
%   Capacitor C4 
% 
ymat(7,7)= ymat(7,7) + 2*C4/dt; 
% 
%   Capacitor C5 
% 
ymat(5,5)= ymat(5,5) + 2*C5/dt; 
ymat(6,6)= ymat(6,6) + 2*C5/dt; 
ymat(5,6)= ymat(5,6) - 2*C5/dt; 
ymat(6,5)= ymat(6,5) - 2*C5/dt; 
% 
%   Capacitor C6 
% 
ymat(6,6)= ymat(6,6) + 2*C6/dt; 
ymat(7,7)= ymat(7,7) + 2*C6/dt; 
ymat(6,7)= ymat(6,7) - 2*C6/dt; 
ymat(7,6)= ymat(7,6) - 2*C6/dt; 
% 
%   Cvco 
% 
ymat(8,8)= ymat(8,8) + 2*Cvco/dt; 
% 
%   Inductor L1 
% 
ymat(5,5)= ymat(5,5) + dt/(2*L1); 
ymat(6,6)= ymat(6,6) + dt/(2*L1); 
ymat(5,6)= ymat(5,6) - dt/(2*L1); 
ymat(6,5)= ymat(6,5) - dt/(2*L1); 
% 
%   Inductor L2 
% 
ymat(6,6)= ymat(6,6) + dt/(2*L2); 
ymat(7,7)= ymat(7,7) + dt/(2*L2); 
ymat(6,7)= ymat(6,7) - dt/(2*L2); 
ymat(7,6)= ymat(7,6) - dt/(2*L2); 
% 
%   Transconductance of op-amp 
% 
ymat(4,2)= gop/Rop; 
% 
%   VCO tuning 
% 
ymat(8,7)= -Kvco*Cvco; 
% 
%   Admittance matrix inverse 
% 
disp( ['ymat determinant = ' num2str( det(ymat) ) ] ); 
yinv= inv(ymat); 
% 
Vk= zeros(1,8);        % Node voltages 
ick= zeros(1,7)';      % Capacitor currents
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ilk= zeros(1,2)';      % Inductor currents 
ik= zeros(1,8)'; 
theta_ref= zeros(1,npts)'; 
  
% 
%   Assume step frequency error at PLL input 
% 
ferror= 9e3; 
theta_ref(1:npts)= 2*pi*ferror*dt*(0:npts-1);  % Phase perturbation to be tracked 
  
theta_vco(1:npts)= 0; 
xpts= zeros(1,npts);        % Plotting  
% 
%    Main iteration loop 
% 
disp( ['dt = ' num2str(dt)] ); 
for ii=2:npts 
    theta_e= theta_vco(ii-1) - theta_ref(ii); 
    Vpd= Kd*sin( theta_e );   
    % 
    %   Compute capacitor currents 
    % 
    ick(1)= ick(1) + 2*C1*( Vk(3)-Vk(4) )/dt; 
    ick(2)= ick(2) + 2*C2*Vk(5)/dt; 
    ick(3)= ick(3) + 2*C3*Vk(6)/dt; 
    ick(4)= ick(4) + 2*C4*Vk(7)/dt; 
    ick(5)= ick(5) + 2*C5*( Vk(5)-Vk(6) )/dt; 
    ick(6)= ick(6) + 2*C6*( Vk(6)-Vk(7) )/dt; 
    ick(7)= ick(7) + 2*Cvco*Vk(8)/dt; 
    % 
    %   Inductor currents 
    % 
    ilk(1)= ilk(1) + dt*( Vk(5)-Vk(6) )/(2*L1); 
    ilk(2)= ilk(2) + dt*( Vk(6)-Vk(7) )/(2*L2); 
    % 
    %   Set up all node current values associated with companion models 
    % 
    ik= zeros(1,8)'; 
    % 
    % 
    %   Node 1 
    % 
    ik(1)= Vpd/Rpd; 
    % 
    %   Node 2 
    % 
    ik(2)= 0; 
    % 
    %   Node 3 
    % 
    ik(3)= ick(1); 
    % 
    %   Node 4 
    % 
    ik(4)= -ick(1); 
    % 
    %   Node 5 
    % 
    ik(5)= ick(5); 
    ik(5)= ik(5) - ilk(1); 
    ik(5)= ik(5) + ick(5); 
    % 
    %   Node 6 
    % 
    ik(6)= ick(3); 
    ik(6)= ik(6) + ilk(1);
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    ik(6)= ik(6) - ick(5); 
    ik(6)= ik(6) + ick(6); 
    ik(6)= ik(6) - ilk(2); 
    % 
    %   Node 7 
    % 
    ik(7)= ick(4); 
    ik(7)= ik(7) + ilk(2); 
    ik(7)= ik(7) - ick(6); 
    % 
    %   Node 8 
    % 
    ik(8)= ick(7); 
    % 
    %   Compute new node voltages 
    % 
    theta_vco(ii)= Vk(8);    
    Vk= yinv*ik; 
    xpts(ii)= theta_e; 
    % 
    %   Compute new capacitor current values 
    % 
    ick(1)= -ick(1) + 2*C1*( Vk(3)-Vk(4) )/dt; 
    ick(2)= -ick(2) + 2*C2*Vk(5)/dt; 
    ick(3)= -ick(3) + 2*C3*Vk(6)/dt; 
    ick(4)= -ick(4) + 2*C4*Vk(7)/dt; 
    ick(5)= -ick(5) + 2*C5*( Vk(5)-Vk(6) )/dt; 
    ick(6)= -ick(6) + 2*C6*( Vk(6)-Vk(7) )/dt; 
    ick(7)= -ick(7) + 2*Cvco*Vk(8)/dt; 
    % 
    %   Compute new inductor currents 
    % 
    ilk(1)= ilk(1) + dt*( Vk(5)-Vk(6) )/(2*L1); 
    ilk(2)= ilk(2) + dt*( Vk(6)-Vk(7) )/(2*L2); 
end 
  
fig1= figure(1); 
clf; 
axes( 'FontName', 'Arial', 'FontSize', 12 ); 
p1= plot( tm/0.001, xpts*180/pi, 'b' ); 
set( p1, 'LineWidth', 2 ); 
xlabel( 'Time, msec', 'FontName', 'Arial', 'FontSize', 12 ); 
ylabel( 'Phase Error, deg', 'FontName', 'Arial', 'FontSize', 12 ); 
title( 'PLL Transient Response', 'FontName', 'Arial', 'FontSize', 14 ); 
h= gca; 
set( h, 'LineWidth', 2 ); 
grid on 
txt= strcat( ['\Deltaf = ', num2str(ferror*0.001), ' kHz'] ); 
annotation(fig1,'textbox','String',{txt},'FontSize',12,... 
    'FontName','Arial',... 
    'FitBoxToText','off',... 
    'LineStyle','none',... 
    'BackgroundColor',[1 1 1],... 
    'Position',[0.504 0.2769 0.2112 0.06183]); 
 
 
 
 
                                                      
i  Version 1.0, October 10, 2016 
ii  From u23908_stability_regions.m. 
iii From u23908_stability_regions.m. 
iv Ibid. 


