

Time Domain Simulation Numerical Integration Methods

Copyright © 2016 AM1 LLC 1 of 30

Time Domain Simulation of Analog/RF
Circuits for MATLAB / SIMULINK / C++

James A Crawford

Synopsisi

RF systems-level designers frequently have a need to incorporate continuous-
time elements like RF filters and phase-locked loop related analog circuitry into
their simulations. These simulations are frequently done in MATLAB,
SIMULINK, or C/C++. Compiled solutions are most attractive for time-intensive
analyses efforts (e.g., Monte-Carlo technique).
 Many designers do not have access to higher level design tools (e.g.,
ADS, Cadence) which provide convenient behavioral models for such blocks. In
such cases, the designer must frequently come up with their own set of state-
equations which are then solved as a set of simultaneous differential (or
difference) equations. Formulating these equations is both tedious and prone to
error.
 This paper presents a convenient means to assemble the underlying
discrete-time solution to such problems based upon straight-forward matrix
techniques. This formulation can be implemented in the designer’s analysis tool
of choice.

 2 of 30

Time Domain Simulation Problem Statement

2 of 30 AM1 LLC
www.am1.us

1 Problem	Statement	

The simple circuit example shown in Figure 1 will be used to illustrate the
underlying problem being addressed. The voltage transfer function for this
simple network is given by1

 inv t

 outv t
R

C L

Figure 1 RLC example circuit

 2 2

/

/
out

in n

V s s
H s

V s s s

 (1)

where

1
n

RC

LC

 (2)

This transfer function is normally written in its standard form as

 2 2

2

2
n

n n

s
H s

s s

 (3)

with 2 1/n RC . The associated time-domain unit-step response is given

by

 2

2

2
exp sin 1 0

1
n nv t t t for t

 (4)

With the additional constraint 1 . All too often, engineers numerically

approximate time derivatives of a state variable u as

 u t h u tdu

dt h

 (5)

1 From §8.2 of [1].

 3 of 30

Time Domain Simulation Problem Statement

3 of 30 AM1 LLC
www.am1.us

using a relatively small time increment h and then formulate a discrete-time
solution based upon this approximation. While appearing quite simple, this
method (known as the forward Euler method2) is poorly conditioned from a
stability standpoint and is also rather imprecise.
 Many excellent references are available which address numerical
integration, but the primary emphasis in this paper is the incorporation of the
time-domain solution into a simplified matrix solution. In pursuing this objective,
three well-known numerical integration algorithms will first be introduced. Each
technique will then be incorporated into a matrix-based solution of Figure 1
which can be easily modified for arbitrarily large circuit applications.
 The state-equations associated with (3) can be written as

21
1 2

2
1

2 2n n n

du
u u

dt
du

u
dt

 (6)

This pair of equations is not difficult to formulate whereas the formulation for a
more complicated schematic like Figure 2 would obviously be much more
involved.

 inv t

 out t
1R

1C

1L

2C

2R

3R

4R

5R

3C

4C

5C

6R

7R

6C
7C

8C

9C

2L

vcoK

Figure 2 Second circuit example with much greater complexity than Figure 1

2 Numerical	Integration	Methods	

The four numerical integration methods considered in this paper are

 Forward Euler
 Backward Euler
 Trapezoidal
 2nd-Order Gear

2.1 Forward	Euler	

In the forward Euler case, time derivatives are approximated as given by (5).
More explicitly for the integration case,

2 Also known as the first-order Adams-Bashforth method.

Time Domain Simulation Numerical Integration Methods

Copyright © 2016 AM1 LLC 4 of 30

1kx 1ky 1k

k

t

t

dt

Figure 3 Simplistic representation for a discrete-time integration block where

1k kt t h

1k k ky y hx (7)

This simple form is used fairly frequently as an ad-hoc method. Other methods
are much better as developed herein.

2.2 Algorithm	Stability	

In the case of a multistep numerical integration algorithm, numerical stability
can be assessed by considering the first-order initial value problem given by

dy
y

dt
 (8)

where y(0) = 1 is assumed. In terms of discrete-time samples, (8) is given by

k ky y (9)

Substituting (9) into (7) where by definition k ky x results in

1k k k

k k

y y hx

y h y

 (10)

where h is a suitably small time increment. This is easily reorganized as

 1 1k ky y h (11)

This result can be rewritten as

1 1k

k

y
h

y
 (12)

from which it is easy to conclude that the solution geometrically increases

without bound of 1 1h . Denoting h u jv , the solution consequently

diverges for

 5 of 30

Time Domain Simulation Numerical Integration Methods

5 of 30 AM1 LLC
www.am1.us

 2 21 1u v (13)

which corresponds to the exterior of a unit-circle centered at the point (1,0) as
shown in Figure 4. The numerical precision of this method is compared to the
other methods later.

Figure 4 Stability regions for forward Euler methodii

 In the more systematic stability analysis approach is needed to address
the general case. A multistep numerical integration algorithm can be written as

 1
0 1

,
p p

k i k i i k i k i
i i

y a y h b y y t

 (14)

The multistep algorithm is said to be absolutely stable3 for those values of h
for which the 1p roots of the characteristic equation lie within or on the unit

circle 1z . Returning to (11), the difference in time sample index is handled

by making use of the unit time-delay operator 1z which translates (11) into

1

1 0

yz y h

y z h

 (15)

The characteristic equation is given by the quantity within the parenthesis as

 1P z z h (16)

The single root of P z is given by

3 From §13.1 of [2].

0 0.5 1 1.5 2 2.5 3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real(h)

Im
a

g
(

h
)

Stability Region for Forward-Euler Method

Stable Region

Unstable
Region

 6 of 30

Time Domain Simulation Numerical Integration Methods

6 of 30 AM1 LLC
www.am1.us

 1z h (17)

and so long as this root lies within the unit circle, the forward Euler formula will
be stable. This characteristic function method is used to assess stability for the
trapezoidal and 2nd-order Gear methods as well.

2.3 Backward	Euler	Method	

The backward Euler method is almost identical to the forward Euler method (7)
except for a difference in the time index. This small difference is extremely
important, however, thereby creating an implicit integration formula rather than
an explicit formula like the forward Euler method. This integration formula is
given by

1 1k k ky y hx (18)

 Algorithm stability in the context of the first-order differential equation
given (8) transforms (18) into

 1 1k k ky y h y (19)

from which it follows

1 1

1
k

k

y

y h

 (20)

This result shows that the method is stable so long as 1 1h which

corresponds to the exterior of the unit-circle shown in Figure 5.

Figure 5 Stability regions for backward Euler methodiii

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

Real(h)

Im
a

g(
h

)

Stability Region for Backward-Euler Method

Stable
Region

Unstable
Region

Time Domain Simulation Numerical Integration Methods

Copyright © 2016 AM1 LLC 7 of 30

2.4 Trapezoidal	Method	

The trapezoidal integration method for a discrete-sample input xk is given by

1
1 2

k k
k k

x x
y y h

 (21)

Denoting a unit-sample time-delay h by 1z , (21) can be rewritten as

1
1

1
1

1

1 2
k

k

y z h

x z

 (22)

In the Laplace transform domain, / 1/y s x s s since the purpose of (21)

is to mimic an ideal integrator as far as possible. Based upon this and (22), the
trapezoidal method approximates the Heaviside operator s as

1

1

2 1

1

z
s

h z

 (23)

This is none other than the well-known bi-linear transform relationship that
frequently occurs in digital signal processing.
 The stability of this method can be assessed in the same way as done
previously for the forward and backward Euler methods. From (8),

k k ky y x (24)

and using this in (21) produces

 1 12k k k k

h
y y y y

 (25)

resulting in

1
1

2

1
2

k

k

h
y

hy

 (26)

 8 of 30

Time Domain Simulation Numerical Integration Methods

8 of 30 AM1 LLC
www.am1.us

The magnitude of the right-hand side of (26) must be < 1 in order to have a

stable result. This condition is satisfied so long as Re 0h which

corresponds to the entire right half-plan of Figure 4. The stability region for
trapezoidal integration is consequently much larger than for the forward Euler
method.
 Looking at the trapezoidal method’s stability by way of the
characteristic function approach, (21) is the starting point. Making use of the
unit time-delay operator in (21) along with (24) results in

1 0
2 2

h h
y z z

 (27)

and the solution to the characteristic equation is given by

1
2

1
2

h

z
h

 (28)

which gives the same stability / instability regions as found above.

2.5 2nd‐Order	Gear	

The 2nd-order Gear numerical integration formula is given by

 1 0 1 1 1 1k k k ky a y a y hb y (29)

where 0 4 / 3a , 1 1/ 3a , and 1 2 / 3b . In considering the stability of

this method in the context of (8), 1 1k ky y which transforms (29) into

1 0 1 1 1 1k k k ky a y a y hb y (30)

Using 1z to represent a unit time-delay once more transforms (30) into

1 2
0 1 1

1 2
1 0 1

1 1

1 0

2 4 1
1

3 3 3

y z a z y z a z y z hb y z

y z hb a z a z

y z h z z

 (31)

The integration formula will be unstable for values of h for which the
bracketed quantity is zero for z anywhere on the unit-circle, or equivalently for

 9 of 30

Time Domain Simulation Numerical Integration Methods

9 of 30 AM1 LLC
www.am1.us

21 3
2

2 2
j je e h (32)

Figure 6 Stability region for 2nd-order Gear methodiv

3 Numerical	Precision	

The starting point for this discussion is the set of two simultaneous differential
equations given earlier (6) which are repeated here for convenience.

21
1 2

2
1

2 2n n n

du
u u

dt
du

u
dt

 (33)

3.1 Forward	Euler	Case	

The associated integration formula was given earlier for this case as (7). This
equation can be arranged into the differential equation form as

1k k
k

u u
u

h

 (34)

Using this form in (33) produces

-6 -5 -4 -3 -2 -1 0
-4

-3

-2

-1

0

1

2

3

4

Real(h)

Im
a

g
(

h
)

Stability Region for 2nd-Order Gear Method

STABLE
outside
Contour

UNSTABLE
within

Contour

 10 of 30

Time Domain Simulation Numerical Precision

10 of 30 AM1 LLC
www.am1.us

1

1

1 1 2
1 2

2 2
1

2 2k k

k k

k k

k

n n n

u u
u u

h
u u

u
h

 (35)

Straight forward algebraic arrangement results in the convenient form

 1

1

2
1 1

2 2

21 2

01
k k

k k

nn n
u u hh h

u uh

 (36)

3.2 Backward	Euler	Case	

This numerical method has not been mentioned until now, but will serve useful
for later comparisons. This integration formula is given by

1 1k k ky y hx (37)

The discrete-time solution to (33) using this integration formula is

1

1

2 1

2

1

22

1
2

1
1 2

1 1
2

k

k

k

k

n n

n

n n

u

h h
u

u h h
u

h h

 (38)

This result can be iterated to compute the impulse response represented by
(33) using the backward Euler method.

 11 of 30

Time Domain Simulation Numerical Precision

11 of 30 AM1 LLC
www.am1.us

3.3 Trapezoidal	Case	

The associated integration formula was given earlier for this case as (21). This
can be rearranged as

 1 1

2
k k k ku u u u

h (39)

Using this formula along with (33) can be used to create the discrete-time
solution

1

1

2 2
1 1 2

2 1
1

22

2 2
2 4

2 2
1 2

2 2
2

k k k

k k
k

k

n n n n

n

n n

u u u
h h

u uu h h
u

h h

 (40)

This result can be iterated to compute the impulse response represented by
(33) using the trapezoidal method.

3.4 2nd	Order	Gear	Case	

The associated integration formula was given earlier for this case as (29). This
can be arranged as

1 1 1

3 4 1

2 3 3k k k ku u u u
h

 (41)

The resultant discrete-time solution is

1

1
1

1

2

1 1

2 2
1

22

3 2 1
2

2 2
3 2 1

1 2
2 2

3 3
2

2 2

k k

k k
k

k

n n

n

n n

u u
h h h

u uu h h h
u

h h

 (42)

 12 of 30

Time Domain Simulation Numerical Precision

12 of 30 AM1 LLC
www.am1.us

 3.5 Comparison	of	Results	

The computed impulse responses for several different time-steps are shown in
Figure 7 through Figure 9. The nearly unstable behavior of the forward Euler
method for the coarse time-step used in Figure 7 should serve as a good
reminder to avoid using this integration method in general. It is admittedly a bit
unfair to compare the first-order methods (forward & backward Euler) with the
second-order methods (trapezoidal & 2nd-order Gear) but this too is done to
emphasize why the 2nd order methods are to be preferred.

Figure 7 Comparison of results for a very coarse time-step t = 0.10 sec

Figure 8 Comparison of results for a time-step t = 0.05 sec

0 0.5 1 1.5 2 2.5 3
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time, sec

U
n

it-
S

te
p

 R
e

sp
o

n
se

, V

Unit-Step Responses

Forward Euler
Ideal
Backward Euler
Trapezoid

2nd-Order Gear

t =0.1

0 0.5 1 1.5 2 2.5 3
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time, sec

U
n

it-
S

te
p

 R
e

sp
o

n
se

, V

Unit-Step Responses

Forward Euler
Ideal
Backward Euler
Trapezoid

2nd-Order Geart =0.05

 13 of 30

Time Domain Simulation Numerical Precision

13 of 30 AM1 LLC
www.am1.us

Figure 9 Comparison of results for a time-step t = 0.01 sec

 It is worthwhile to compare the results relative to the ideal response
given by (4). In general, numerical integration algorithms introduce a small time
delay compared to the ideal response. Normally this delay is a true time-delay
but in some cases it may be a small time advance as well. The trapezoidal and
2nd-order Gear results are compared to a time-advanced version of the ideal
response in Figure 10, a time-delayed version in Figure 11, and no time
adjustment to the ideal response in Figure 12. At least for this particular
impulse response and t value, the 2nd-order Gear appears to be shape-
preserving as evidenced by Figure 10.

Figure 10 Comparison of results with respect to ideal where the ideal result has
been advanced in time by t/2

0 0.5 1 1.5 2 2.5 3
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time, sec

U
n

it-
S

te
p

 R
e

sp
o

n
se

, V

Unit-Step Responses

Forward Euler
Ideal
Backward Euler
Trapezoid

2nd-Order Geart =0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.01

-0.005

0

0.005

0.01

0.015

0.02

time, sec

Im
p

u
ls

e
 R

e
sp

o
n

se
, V

Comparison of 2nd Order Methods

Trapezoidal - Ideal

2nd-Order Gear - Ideal

t =0.01

 14 of 30

Time Domain Simulation Numerical Precision

14 of 30 AM1 LLC
www.am1.us

Figure 11 Comparison of results with respect to ideal where the ideal result has
been delayed in time by t/2

Figure 12 Comparison of results with respect to ideal where the ideal result has
neither been delayed or advanced in time

 The trapezoidal and 2nd-order Gear methods are both desirable
methods to use. The specific choice depends in part on how easy the discrete-
time equations are formulated for actual circuits. This is the topic of the next
section.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.10.1

time, sec

Im
p

u
ls

e
 R

e
sp

o
n

se
, V

Comparison of 2nd Order Methods

Trapezoidal - Ideal

2nd-Order Gear - Ideal

t =0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

time, sec

Im
p

u
ls

e
 R

e
sp

o
n

se
, V

Comparison of 2nd Order Methods

Trapezoidal - Ideal

2nd-Order Gear - Ideal

t =0.01

In small over-sampling situations (e.g., sampling rate < 20x the maximum
frequency present in the circuit), the 2nd-order Gear method should give
better results than the trapezoidal method. For higher over-sampling ratios,
both methods will perform quite well.

Time Domain Simulation Discrete Time Circuit Equivalents

Copyright © 2016 AM1 LLC 15 of 30

4 Discrete	Time	Circuit	Equivalents	

This section develops the implementation details for discrete-time simulation of
analog circuits using the preferred trapezoidal and 2nd-order Gear methods.
Each of these methods will be developed separately.

4.1 Trapezoidal	Method	

In the case of an ideal capacitor, the defining relationship is

dV
i C

dt
 (43)

where the polarities are as shown in Figure 13. The trapezoidal integration
method represents a time derivative as given by (39). Combining these two
equations produces

i V

Figure 13 Basic capacitor with current direction and voltage polarity shown

1
1 1

1 1

2

2

k k
k k k k

k k k k

dV dV C
i i C C V V

dt dt h
C

i i V V
h

 (44)

This result can be re-cast as an equivalent circuit as shown in Figure 14.

2

h
R

C

1kV

2
k k

C
V i

h

1ki

Figure 14 Companion model for ideal capacitor based upon the trapezoidal
numerical integration formula

 The same type of formulation can be created for an ideal linear
inductor. Starting with the voltage and current polarities shown in Figure 15 and

 16 of 30

Time Domain Simulation Appendix

16 of 30 AM1 LLC
www.am1.us

 i

V

Figure 15 Ideal linear inductor

the fundamental relationship for inductors given by

di
v L

dt
 (45)

the trapezoidal integration formula (39) can be combined as

1
1 1

1 1

2

0
2

k k
k k k k

k k k k

di di L
L i i V V

dt dt h

h
V V i i

L

 (46)

with the equivalent circuit representation shown in Figure 16.

2L
R

h

+ _
1kV

2 k k

h
V i

L

1ki

Figure 16 Companion model for ideal inductor based upon the trapezoidal
numerical integration formula

 These results may look somewhat complicated, but they permit an
arbitrary circuit of resistors, capacitors, and inductors to be represented in the
time domain as a fixed array of conductances driven by current sources thereby
making matrix-based iterative computations very straight forward as will be
shown shortly.

 17 of 30

Time Domain Simulation Appendix

17 of 30 AM1 LLC
www.am1.us

4.2 2nd‐Order	Gear	Method	

The discrete-time formula associated with an ideal capacitor is given b

 1 0 1 1 1
11

k k k k
k

C dV
V a V aV C i

hb dt

 (47)

This result can be cast into the equivalent circuit model shown here in Figure
17 where the proper substitutions for the Gear coefficients (a0, a1, b–1) have
been made.

2

3

h
R

1kV

1

2

2k k

C C
V V

h h

1ki

Figure 17 2nd-order Gear companion circuit model for an ideal capacitor C

 For an ideal inductor, the 2nd-order Gear integration formula results in

 1 0 1 1 1
1

k k k k

di L
L i a i a i V

dt hb

 (48)

This result can be cast into the equivalent circuit model shown here in

1

L
R

hb

1kV

0 1 1k ka i a i

1ki

Figure 18 2nd-order Gear companion circuit model for an ideal inductor L

 18 of 30

Time Domain Simulation Appendix

18 of 30 AM1 LLC
www.am1.us

4.3 Companion	Model	Summary	

The previous results are summarized in Table 1. The information storage
requirements tend to favor the trapezoidal method in that they are the same for
both capacitors and inductors. A bit more organization is required in using the
2nd-order Gear method.

Table 1 Companion Model Summary for L’s and C’s

Required Storage
Vk Vk-1 ik ik-1

Trapezoid

Ideal
Capacitor

2

h
R

C

+ _
1kV

2
k k

C
V i

h

1ki

Trapezoid

Ideal
Inductor

2L
R

h

1kV

2 k k

h
V i

L

1ki

2nd Gear

Ideal
Capacitor

2

3

h
R

1kV

1

2

2k k

C C
V V

h h

1ki

2nd Gear

Ideal
Inductor

2

3

L
R

h

1kV

1

4 1

3 3k ki i

1ki

Time Domain Simulation Arbitrary Circuit Matrix Formulation

Copyright © 2016 AM1 LLC 19 of 30

5 Arbitrary	Circuit	Matrix	Formulation	

The previous material makes it straight forward to finally capture an arbitrary
circuit in matrix form to perform time domain simulation. A nodal circuit analysis
will be used based node voltages and admittances. The trapezoidal integration
formula will be used in the examples which follow. The node voltages and
currents are related by the classical formulation

yV i (49)

Step #1: Sequentially number the circuit’s nodes

 inv t

 outv t
R

C L

Figure 19 First example problem with nodes numbered sequentially

Step #2: Replace voltage sources by their equivalent Norton current
sources

 in

src

v t

R

 outv t
R

C L

srcR

Figure 20 Ideal voltage sources replaced with Norton current-source
equivalents (here Rsrc simply made << R)

Step3: Replace all C’s and L’s by their respective companion model

 in

src

v t

R

 outv t
R

C L

srcR

2

h
R

C

1
k

V

2
k k

C
V i

h

1ki

2L
R

h

1
k

V

2 k k

h
V i

L
 1ki

Figure 21 Use of companion models transforms the original circuit into a circuit
composed of only resistors and current sources

 20 of 30

Time Domain Simulation Arbitrary Circuit Matrix Formulation

20 of 30 AM1 LLC
www.am1.us

Step 4: Assemble the admittance matrix y() for the circuit

There are only two circuit nodes shown in the example circuit (Figure 21) and 4
resistors. For a given resistor 1/R g connected between nodes p and q, the

matrix additions are as follows:

, ,

, ,

, ,

, ,

y p p y p p g

y q q y q q g

y p q y p q g

y q p y q p g

 (50)

For passive circuit elements (R, L, C), this pattern is always the same and is
easily repeated for each circuit element. In cases where p or q is zero
(corresponding to ground), the only one of the four equations above will be
affected corresponding to the non-zero node index.
 The resultant admittance matrix associated with Figure 21 is given by

1 1 1

1 1 2

2

srcR R R
y

C h

R R h L

 (51)

 Note that this matrix will be unchanged for every time-step iteration!
The inverse of the y-matrix will also be constant for every time-step as well.

Step 5: Formulate the current source vector associated with the nodes

Any external current flowing into a circuit node is considered to be negative
whereas currents flowing out are positive quantities. It is crucial that this
convention be strictly adhered to.
 There are 3 current sources shown in Figure 21. Only nodal currents
associated with non-ground nodes must be kept track of. The current source
vector is given by

1 2

2

k

k k k k

in

src
src

out C out L

v

R
i

C h
v i v i

h L

 (52)

where the C and L subscripts denote capacitor and inductor currents
respectively. Aside from computing the inverse of the y-matrix in (51), the

iterative computational process can now commence as 1
1 kk srcV y i
 .

Time Domain Simulation Arbitrary Circuit Matrix Formulation

Copyright © 2016 AM1 LLC 21 of 30

 The MATLAB script used to iteratively compute the circuit’s response is
given in Figure 24 with the results shown in Figure 22 and Figure 23 for two
different time-steps.

Figure 22 Ideal analytical solution (4) compared with matrix-based solution
using Figure 21 with t = 0.10 sec

Figure 23 Ideal analytical solution (4) compared with matrix-based solution
using Figure 21 with t = 0.01 sec

5.1 A	More	Complicated	Example	

While the simple example just considered is insightful, a more complicated
circuit is needed in order to illustrate the MATLAB script formulation more
clearly. To this end, consider the complete PLL circuit shown in Figure 25.

0 0.5 1 1.5 2 2.5 3
-0.2

-0.1

0

0.1

0.2

0.3

0.4

time, sec

U
n

it-
S

te
p

 R
e

sp
o

n
se

, V

Comparison of 2nd Order Methods

Trapezoidal Method
Ideal

t =0.1

0 0.5 1 1.5 2 2.5 3
-0.2

-0.1

0

0.1

0.2

0.3

0.4

time, sec

U
n

it-
S

te
p

 R
e

sp
o

n
se

, V

Comparison of 2nd Order Methods

Trapezoidal Method
Ideal

t =0.01

 22 of 30

Time Domain Simulation Arbitrary Circuit Matrix Formulation

22 of 30 AM1 LLC
www.am1.us

Figure 24 MATLAB script used to compute the responses in Figure 22 and
Figure 23 using the trapezoidal-based companion models

e ref vco

 sind eK
vco

vco

ref 1R

2R 1C

2C
3C 4C

3R

5C 6C

1L 2L
vcoK

Figure 25 Complete PLL circuit including additional LC elliptic filter and
nonlinear sinusoidal phase detector

In this figure, additional steps must be taken to transform it into an equivalent
circuit that is easily describable using an admittance matrix. These steps are
illustrated in Figure 26 where

1. Voltage output of the op-amp has been transformed into a Norton-
equivalent current source;

2. The VCO is recognized as an ideal integrator of phase which has been
replaced by a scaled ideal integrator of current which is mathematically
equivalent;

3. The output of the phase detector has also been converted to an
equivalent Norton source (but not explicitly shown in the schematic)

Rsrc= 0.01;
R= 10;
L= 0.80;
C= 1.0/((1*2*pi)^2 *L);
dt = 0.01;
ymat= [(1/Rsrc + 1/R) (-1/R); (-1/R) (1/R + (2*C)/dt + dt/(2*L))];
yinv= inv(ymat);
vk= 0.0;
ick= 0.0;
ilk= 0.0;

npts= 5100;
vin= ones(1,npts);
vout= zeros(1,npts);
for ii=1:npts
 isrc= [vin(ii)/Rsrc, (2*C*vk/dt+ick)-(dt*vk/(2*L)+ilk)]';
 vnodes= yinv*isrc;

 ick= -(2*C*vk/dt + ick);
 ilk= dt*vk/(2*L) + ilk;

 vk= vnodes(2);

 ick= ick + vk*2*C/dt;
 ilk= ilk + vk*dt/(2*L);

 vout(ii)= vk;
end
tm= (0:npts-1)*dt;
p1= plot(tm, vout, 'r');
set(p1, 'LineWidth', 2);

 23 of 30

Time Domain Simulation Arbitrary Circuit Matrix Formulation

23 of 30 AM1 LLC
www.am1.us

e vco ref

 sind eK

vco

vcoref

1R

2R 1C

2C
3C 4C

3R

5C 6C

1L 2L

7vco vcoK C V

vcoC

2op

op

g V

R

opR

tuneV

shR

Figure 26 Modified PLL schematic incorporating Norton equivalent circuit for
the op-amp output and an additional capacitor Cvco as an ideal integrator of
phase

 Note that the op-amp in Figure 26 has been replaced by an equivalent
transconductance amplifier having an output impedance of Rop. The
transconductance stage is the only non-passive element in the schematic, and
compared to the MATLAB admittance formulation described by (50), results in

a non-symmetric matrix entry where 4,2 op

op

g
y

R
 . The MATLAB script for

this schematic is provided in the Appendix. A few example transient responses
are shown in Figure 27 through Figure 29.

Figure 27 Phase error transient response of the PLL for an initial frequency-
step of 6 kHz. Loop natural frequency = 5 kHz with damping factor of 0.707.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-120

-100

-80

-60

-40

-20

0

20

40

Time, msec

P
h

a
se

 E
rr

o
r,

 d
e

g

PLL Transient Response

f = 6 kHz

 24 of 30

Time Domain Simulation Arbitrary Circuit Matrix Formulation

24 of 30 AM1 LLC
www.am1.us

Figure 28 Increasing the initial frequency error to 7 kHz results in a cycle-slip
(360o) as shown compared to Figure 27

Figure 29 Increasing the initial frequency error to 9 kHz results in more cycle-
slipping (1080o) as shown compared to Figure 27

5.2 In	Summary	

Modeling arbitrary analog and or mixed-signal circuitry in the time domain using
MATLAB (or other similar tools like C++) is relatively straight forward using
companion models and an admittance matrix. The trapezoidal or 2nd-Order
Gear integration formulas are preferred for their precision versus complexity.
 Creation of the admittance matrix follows a very structured formula as
described earlier and can be done by visual inspection with a little practice. The
current source vector assembly requires a bit more care perhaps, but is equally
straight forward with some experience. This technique provides an accurate
means to capture continuous-time circuit behavior when needed for embedded
systems-related analysis.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-450

-400

-350

-300

-250

-200

-150

-100

-50

0

Time, msec

P
h

a
se

 E
rr

o
r,

 d
eg

PLL Transient Response

f = 7 kHz

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1200

-1000

-800

-600

-400

-200

0

Time, msec

P
h

a
se

 E
rr

o
r,

 d
e

g

PLL Transient Response

f = 9 kHz

Time Domain Simulation References

Copyright © 2016 AM1 LLC 25 of 30

6 References	

1. J.A. Crawford, Frequency Synthesizer Design Handbook, Artech
House, 1994.

2. Leon O. Chua and Pen-Min Lin, Computer-Aided Analysis of Electronic
Circuits: Algorithms and Computational Techniques, Prentice-Hall,
1975.

Time Domain Simulation Appendix

Copyright © 2016 AM1 LLC 26 of 30

7 Appendix:	
%==================== u23915_timedomain_pll.m ===========================
%
% Example time-domain simulation case based upon
% trapezoidal companion circuit models
%
disp(' ');
disp(' ');
Kd= 1; % Phase detector gain, V/rad
Kvco= 2*pi*10000; % VCO gain, rad/sec/V
fn= 5e3; % Desired natural frequency, Hz
wn= 2*pi*fn;
zeta= 0.707; % Desired damping factor
%
% Loop time constant
%
loop_tau= 1/(wn*zeta);
%
% Do simulation for 25 time constants
%
tsim= 25*loop_tau;
%
%
% Simulation time increment
%
dt= 0.01/fn;
disp(['Sampling rate = ' num2str(1/dt)]);
npts= floor(tsim/dt);
tm= (0:npts-1)*dt; % Time axis

tau1= Kd*Kvco/wn^2;
tau2= 2*zeta/wn;
%
% Resistance level for R1 is arbitrary in this example
%
R1=1e3;
C1= tau1/R1;
R2= tau2/C1;
disp(['C1 (pF)= ' num2str(C1*1e12) ' R1 = ' num2str(R1)]);
disp(['R2 = ' num2str(R2)]);
%
% Situate 5th order elliptic filter at 100 kHz
% Pick 20 degree 5% reflection coefficient filter
%
% Normalized RLC quantities are:
%
R3= 1.0;
C2= 0.3419;
C3= 1.2080;
C4= 1.1545;
C5= 0.0462;
C6= 0.0833;
L1= 0.9108;
L2= 1.2782;
%
% Scale the normalized elliptic filter RLC's to
% 1 kOhms and a ripple bandwidth of 25 kHz
%
Rscale= 1000;
Fscale= 2*pi*25e3;
%
R3= R3*Rscale;
C2= C2/Rscale/Fscale;
C3= C3/Rscale/Fscale;

 27 of 30

Time Domain Simulation Appendix

27 of 30 AM1 LLC
www.am1.us

C4= C4/Rscale/Fscale;
C5= C5/Rscale/Fscale;
C6= C6/Rscale/Fscale;
L1= L1*Rscale/Fscale;
L2= L2*Rscale/Fscale;
%
% Arbitrarily choose Cvco
% Simply used for scaling within the mathematical model
%
Cvco= 1e-6;
%
% Choose Op-Amp parameters
%
Rop= 0.01; % Op-amp's output impedance, Ohms
gop= 1000; % Assumed transconductance for op-amp
%
% Choose Norton equivalent output resistance for phase detector
%
Rpd= 0.1;
%
% Add in shunt resistor across C1
%
Rsh= 1e7;
%-
%
% Set up admittance matrix
% Does not change during iterations
%
%-
ymat= zeros(8,8);
%
% Output impedance of phase detector
%
ymat(1,1)= ymat(1,1) + 1/Rpd;
%
% Entries for R1
%
ymat(1,1)= ymat(1,1) + 1/R1;
ymat(2,2)= ymat(2,2) + 1/R1;
ymat(1,2)= ymat(1,2) - 1/R1;
ymat(2,1)= ymat(2,1) - 1/R1;
%
% Entries for R2
%
ymat(2,2)= ymat(2,2) + 1/R2;
ymat(3,3)= ymat(3,3) + 1/R2;
ymat(2,3)= ymat(2,3) - 1/R2;
ymat(3,2)= ymat(3,2) - 1/R2;
%
% Entries for R3
%
ymat(4,4)= ymat(4,4) + 1/R3;
ymat(5,5)= ymat(5,5) + 1/R3;
ymat(4,5)= ymat(4,5) - 1/R3;
ymat(5,4)= ymat(5,4) - 1/R3;
%
% Output impedance of op-amp
%
ymat(4,4)= ymat(4,4) + 1/Rop;
%
% Rsh
%
ymat(3,3)= ymat(3,3) + 1/Rsh;
ymat(4,4)= ymat(4,4) + 1/Rsh;
ymat(3,4)= ymat(3,4) - 1/Rsh;
ymat(4,3)= ymat(4,3) - 1/Rsh;

 28 of 30

Time Domain Simulation Appendix

28 of 30 AM1 LLC
www.am1.us

%
% Capacitor C1 trapezoid companion model
%
ymat(3,3)= ymat(3,3) + 2*C1/dt;
ymat(4,4)= ymat(4,4) + 2*C1/dt;
ymat(3,4)= ymat(3,4) - 2*C1/dt;
ymat(4,3)= ymat(4,3) - 2*C1/dt;
%
% Capacitor C2
%
ymat(5,5)= ymat(5,5) + 2*C2/dt;
%
% Capacitor C3
%
ymat(6,6)= ymat(6,6) + 2*C3/dt;
%
% Capacitor C4
%
ymat(7,7)= ymat(7,7) + 2*C4/dt;
%
% Capacitor C5
%
ymat(5,5)= ymat(5,5) + 2*C5/dt;
ymat(6,6)= ymat(6,6) + 2*C5/dt;
ymat(5,6)= ymat(5,6) - 2*C5/dt;
ymat(6,5)= ymat(6,5) - 2*C5/dt;
%
% Capacitor C6
%
ymat(6,6)= ymat(6,6) + 2*C6/dt;
ymat(7,7)= ymat(7,7) + 2*C6/dt;
ymat(6,7)= ymat(6,7) - 2*C6/dt;
ymat(7,6)= ymat(7,6) - 2*C6/dt;
%
% Cvco
%
ymat(8,8)= ymat(8,8) + 2*Cvco/dt;
%
% Inductor L1
%
ymat(5,5)= ymat(5,5) + dt/(2*L1);
ymat(6,6)= ymat(6,6) + dt/(2*L1);
ymat(5,6)= ymat(5,6) - dt/(2*L1);
ymat(6,5)= ymat(6,5) - dt/(2*L1);
%
% Inductor L2
%
ymat(6,6)= ymat(6,6) + dt/(2*L2);
ymat(7,7)= ymat(7,7) + dt/(2*L2);
ymat(6,7)= ymat(6,7) - dt/(2*L2);
ymat(7,6)= ymat(7,6) - dt/(2*L2);
%
% Transconductance of op-amp
%
ymat(4,2)= gop/Rop;
%
% VCO tuning
%
ymat(8,7)= -Kvco*Cvco;
%
% Admittance matrix inverse
%
disp(['ymat determinant = ' num2str(det(ymat))]);
yinv= inv(ymat);
%
Vk= zeros(1,8); % Node voltages
ick= zeros(1,7)'; % Capacitor currents

 29 of 30

Time Domain Simulation Appendix

29 of 30 AM1 LLC
www.am1.us

ilk= zeros(1,2)'; % Inductor currents
ik= zeros(1,8)';
theta_ref= zeros(1,npts)';

%
% Assume step frequency error at PLL input
%
ferror= 9e3;
theta_ref(1:npts)= 2*pi*ferror*dt*(0:npts-1); % Phase perturbation to be tracked

theta_vco(1:npts)= 0;
xpts= zeros(1,npts); % Plotting
%
% Main iteration loop
%
disp(['dt = ' num2str(dt)]);
for ii=2:npts
 theta_e= theta_vco(ii-1) - theta_ref(ii);
 Vpd= Kd*sin(theta_e);
 %
 % Compute capacitor currents
 %
 ick(1)= ick(1) + 2*C1*(Vk(3)-Vk(4))/dt;
 ick(2)= ick(2) + 2*C2*Vk(5)/dt;
 ick(3)= ick(3) + 2*C3*Vk(6)/dt;
 ick(4)= ick(4) + 2*C4*Vk(7)/dt;
 ick(5)= ick(5) + 2*C5*(Vk(5)-Vk(6))/dt;
 ick(6)= ick(6) + 2*C6*(Vk(6)-Vk(7))/dt;
 ick(7)= ick(7) + 2*Cvco*Vk(8)/dt;
 %
 % Inductor currents
 %
 ilk(1)= ilk(1) + dt*(Vk(5)-Vk(6))/(2*L1);
 ilk(2)= ilk(2) + dt*(Vk(6)-Vk(7))/(2*L2);
 %
 % Set up all node current values associated with companion models
 %
 ik= zeros(1,8)';
 %
 %
 % Node 1
 %
 ik(1)= Vpd/Rpd;
 %
 % Node 2
 %
 ik(2)= 0;
 %
 % Node 3
 %
 ik(3)= ick(1);
 %
 % Node 4
 %
 ik(4)= -ick(1);
 %
 % Node 5
 %
 ik(5)= ick(5);
 ik(5)= ik(5) - ilk(1);
 ik(5)= ik(5) + ick(5);
 %
 % Node 6
 %
 ik(6)= ick(3);
 ik(6)= ik(6) + ilk(1);

 30 of 30

Time Domain Simulation Appendix

30 of 30 AM1 LLC
www.am1.us

 ik(6)= ik(6) - ick(5);
 ik(6)= ik(6) + ick(6);
 ik(6)= ik(6) - ilk(2);
 %
 % Node 7
 %
 ik(7)= ick(4);
 ik(7)= ik(7) + ilk(2);
 ik(7)= ik(7) - ick(6);
 %
 % Node 8
 %
 ik(8)= ick(7);
 %
 % Compute new node voltages
 %
 theta_vco(ii)= Vk(8);
 Vk= yinv*ik;
 xpts(ii)= theta_e;
 %
 % Compute new capacitor current values
 %
 ick(1)= -ick(1) + 2*C1*(Vk(3)-Vk(4))/dt;
 ick(2)= -ick(2) + 2*C2*Vk(5)/dt;
 ick(3)= -ick(3) + 2*C3*Vk(6)/dt;
 ick(4)= -ick(4) + 2*C4*Vk(7)/dt;
 ick(5)= -ick(5) + 2*C5*(Vk(5)-Vk(6))/dt;
 ick(6)= -ick(6) + 2*C6*(Vk(6)-Vk(7))/dt;
 ick(7)= -ick(7) + 2*Cvco*Vk(8)/dt;
 %
 % Compute new inductor currents
 %
 ilk(1)= ilk(1) + dt*(Vk(5)-Vk(6))/(2*L1);
 ilk(2)= ilk(2) + dt*(Vk(6)-Vk(7))/(2*L2);
end

fig1= figure(1);
clf;
axes('FontName', 'Arial', 'FontSize', 12);
p1= plot(tm/0.001, xpts*180/pi, 'b');
set(p1, 'LineWidth', 2);
xlabel('Time, msec', 'FontName', 'Arial', 'FontSize', 12);
ylabel('Phase Error, deg', 'FontName', 'Arial', 'FontSize', 12);
title('PLL Transient Response', 'FontName', 'Arial', 'FontSize', 14);
h= gca;
set(h, 'LineWidth', 2);
grid on
txt= strcat(['\Deltaf = ', num2str(ferror*0.001), ' kHz']);
annotation(fig1,'textbox','String',{txt},'FontSize',12,...
 'FontName','Arial',...
 'FitBoxToText','off',...
 'LineStyle','none',...
 'BackgroundColor',[1 1 1],...
 'Position',[0.504 0.2769 0.2112 0.06183]);

i Version 1.0, October 10, 2016
ii From u23908_stability_regions.m.
iii From u23908_stability_regions.m.
iv Ibid.

