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1 Overview	
 
A variety of lumped-element LC lowpass filter families are considered in this monograph including 
 

 Butterworth 
 Chebyshev 
 Inverse Chebyshev 
 Gaussian to 6 dB and 12 dB, including adjustable Gaussian 
 Bessel 
 Linear Phase to 0.5o and 0.05o 
 Transitional Filters 
 Elliptical 

 
Detailed design information is developed for each filter type. The balance of this section looks at several 
filter design fundamentals. 

1.1 General	Approach	
 
The approach followed herein begins with posing the lowpass filter design problem initially as an 
approximation problem based upon filter poles and zeros in the complex plane. The poles and zeros may 
correspond to a classical filter type like those listed in the previous section or may stem from manual 
efforts to meet requirements posed in terms of the desired attenuation characteristic and or the filters’ 
group delay characteristics. 
 Once the approximation problem solution has been obtained in terms of poles and zeros, the 
synthesis step may begin. While closed-form network solutions exist for a number of the filter types listed 
earlier, in general these are only available for equally-terminated filters or unloaded filters. On occasion it 
is advantageous to have a design approach that is easily amendable to the general unequally-terminated 
filter case. Although polynomial calculations can be done in the spirit of Darlington’s approach to filter 
synthesis, an iterative numerical method1 is used here because of its general applicability as well as the 
ease with which it accommodates redundant circuit elements.  
 The remainder of this section revisits lossless filter theory in the context of using ABCD matrix 
descriptions. This information is crucial for the polynomial-based filter design method of Darlington, but is 
not required to use the iterative synthesis approach. It is nevertheless included here for completeness.  
 This section concludes with a brief look at the pole-zero formulation and the impact of differing 
load resistances upon the Darlington synthesis method. 

1.2 Lossless	Two‐Port	Filter	Design	
 
Consider the linear two-port network in Figure 1 represented by its ABCD matrix description as [15] 
 

 
1 2

1 2

V VA B

I IC D

    
    
    

 (2.1) 

                                                      
1  Motivated by [20]. 
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The transducer gain function | T ( s ) |2 is defined as the ratio of the maximum power available from the 
generator to the actual power delivered to the load R2 in Figure 1. As such, the maximum power available 
from the source is given by 

 

2 2

1 1

1

2 4Avail

E E
P

R R
   
 

 (2.2) 

 
where E is the amplitude of the applied input signal which is taken to be E exp( j t ). Similarly, the power 
delivered to the load R2 is given by 

 

2

2

2
Load

V
P

R
  (2.3) 

Consequently,  

  
22

2 2 2
2

1 1 22
4 4

R RE E
T s

R R VV
   (2.4) 

leading to  

   2

2 12

RE
T s

V R
  (2.5) 

1R

2R

1I 2I

1V 2V
E

A B

C D

 
 
 

 
Figure 1 ABCD network description 

 For a purely reactive network, A and D must be even functions of s while B and C must be odd 
functions of s. From (2.1), 

 
2

2

D B

V C A

I AD BC

 
       

 (2.6) 

 
For a reciprocal network2, the determinant of the ABCD matrix (AD – BC) must be unity. 
 From Figure 1, it is clear that  

 2 2 2V I R  (2.7) 

 1 1 1E I R V   (2.8) 

from which (2.5) can be re-expressed as 

      2 1 1 2

1 22

AR DR B CR R
T s

R R

  
  (2.9) 

 
Based upon earlier remarks, T ( s ) can be broken into distinct even and odd portions as 
 

                                                      
2  A reciprocal network exhibits the same loss characteristics starting from either port. 
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 

 

2 1

1 2

1 2

1 2

2

2

e

o

AR DR
T s

R R

B CR R
T s

R R







 (2.10) 

 
 In the context of the lossless network [14] shown in Figure 2,  
 

 
2 avail

del

P
T

P
  (2.11) 

The characteristic function K( s ) is defined as 
 

      1K s s T s  (2.12) 

 
where 1( s ) is the reflection coefficient as viewed from port 1. For s = j , 
 

 
2 2 2

1K T  (2.13) 

availP

reflP

delP

 
Figure 2 Power flow available, delivered to the load, and reflected back to the source from the lossless 
network 

Substituting (2.11) into (2.13) produces 

 
2 2

1
reflavail

del del

PP
K

P P
   (2.14) 

Note that 

 

2 2

2 2

1 1

1

refl del refl avail

del del del

P P P P
K T

P P P

K T


     

  

 (2.15) 

 
where the last equation is known as the famous Feldtkeller equation which is a statement of energy 
conservation for the lossless network (i.e., power must be either reflected back to the source or delivered 
to the load). 
 Now making use of (2.10) in (2.15), 
 

 

 
 

   

2 2 *

2 2

2 2

2 1 1 2

1 2

                          

                          

                          
4

e o e o e o

e o e o

e o

T T T T T T T

T T T T

T T

AR DR B CR R

R R

      
    

 

  


 (2.16) 
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Starting from (2.16), making use of (2.15) and the reciprocal network requirement AD – BC = 1, 
 

 
2 2 2 2 2 2 2 2

2 2 1 2 1 1 2 1 2

1 2

2 2

4

A R ADR R D R B BCR R C R R
T

R R

    
  (2.17) 

 1 2 1 2

1 2

4 4
1

4

ADR R BCR R

R R


  (2.18) 

Subtracting (2.18) from (2.17) produces 
 

 

   

2 2 2 2 2 2 2 2
2 2 1 2 1 1 2 1 2 1 2 1 2

1 2 1 2

2 2 2 2 2 2 2 2
2 1 2 1 1 2 1 2

1 2

2 2
22 1 1 2

1 2

2 2 4 4
1

4 4

2 2
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4

A R ADR R D R B BCR R C R R ADR R BCR R
T
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A R ADR R D R B BCR R C R R

R R

AR DR B CR R
K

R R

     
  

    


  
 

 (2.19) 

 
Similarly then, the characteristic equation can be broken into its even and odd portions as 
 

    2 1 1 2

1 2 1 22 2
e o

AR DR B CR R
K s K s

R R R R

 
   (2.20) 

 
Using (2.10) and (2.20), it is also true that 
 

 

   

   

1
1 2

2

2

11 2

2

1
2

e e o o

o o e e

R
A T K B R R T K

R

R
C T K D T K

RR R

   

   

 (2.21) 

 
Many other relationships exist between the ABCD, admittance, and impedance parameters associated 
with the lossless network3. In the case of admittance parameters, for example,  
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
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

 (2.22) 

 
 It will prove useful to have voltage-gain relationships in terms of the ABCD matrix for the iterative 
filter synthesis step. These details are left to §11. 

                                                      
3  See chapter 6 of [14]. 
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1.3 Poles	and	Zeros	
 
The transducer gain function can be expressed in terms of its poles and zeros as 

  
 

 

 
 0

n
n

m
m

s t
E s

T s t
P s

s p


 






 (2.23) 

 
where the zeros are represented by the tn, the poles are represented by pm, and t0 is a real constant of 
proportionality. From the latter portion of (2.15), the characteristic function can be written in a similar 
manner as 

  
 

 

 
 0

n
n

m
m

s s
F s

K s s
P s

s p


 






 (2.24) 

 
K ( s ) and T ( s ) must clearly have the same poles based upon (2.23) and (2.24). The tn and sn values 
must be real or conjugate imaginary pairs and lie in the left-half plane. The pm are conjugate pairs and 
purely imaginary for a ladder-type filter. 

 Based upon    2 2
1T s K s   given earlier in (2.15), these last two equations make it 

possible to write 

            E s E s P s P s F s F s      (2.25) 

From (2.13), 

 

   
   

 
 

2 2
2

1

1

in source

in source

in source

in source

F s F sZ R K

Z R T E s E s

F sZ R

Z R E s






  

 


 



 (2.26) 

From this, it easily follows 

 
   
   in source

E s F s
Z R

E s F s





 (2.27) 

 
This driving point impedance can be used to synthesize the elliptic filter in terms of its constituent 
capacitor and inductor values.  

When negative elements must be avoided, it is necessary to introduce additional attenuation 
poles at zero, infinity, or both [16]. 

Some prefer to initiate a design based upon the characteristic function K( s ) because there are 
almost no restrictions on the placement of its zeros. This allows the zeros to be placed in the passband 
region thereby making the passband response rather insensitive to element variations [16].  

1.4 Arbitrary	Load	Impedance	
 
In the context of Figure 1, the maximum power which can be delivered to the load is given by 
 



U18213 LPF Designer Documentation.docx  6 of 136 

©James A Crawford 2012-15 U18213 Version 1.30 

 

2

2
1 2

avail

E
P R

R R

 
   

 (2.28) 

 
In the general case where the load is replaced by a general impedance z = a + j b with E  1 and R1 = 1, 
the power delivered is given by 

 
 

2
2 2 21

del

a
P i a

a b
 

 
 (2.29) 

and Pavail = 1/4. Continuing, 

 
 2 2

4

1
del

avail

P a

P a b


 
 (2.30) 

 
Since the reflection coefficient  is given by 

 
1 1

1 1

z a jb

z a jb

  
  

  
 (2.31) 

it is easy to show that 

 
2

1del

avail

P

P
    (2.32) 

Continuing in this vein but with R2  R1,  

 
 

2
2

2

4

1
avail

R
P

R



 (2.33) 

resulting in   

 
   

2
22

2

1
1

4
del

avail

RP

P R


    (2.34) 

For this case then, 

 
       

   

   
2

22

2

11 1
1

1 4
1

del

avail

RP
F s F sP K s K s R

P s P s


    

 




 (2.35) 

which leads directly to  
 

 

   
 

   

             
   

2
2

22

4
1

1

R
P s P s F s F s

R M s M s
s

P s P s F s F s E s E s

 
    

      
   

 (2.36) 

 

where a new polynomial  M s  emerges. Following the same path as used with (2.26) and (2.27), (2.36) 

leads to a driving point impedance function given by 
 

 
   
   in

E s M s
Z

E s M s





 (2.37) 

 
where the function-zeros of E( s ), F( s ), and P( s ) were computed earlier. When R2  R1, the zeros of F( 
s ) are effectively perturbed in (2.27) as given by the numerator portion of (2.36). 
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2 Butterworth	Lowpass	Filters	
 
The Laplace domain voltage transfer function for a filter can be represented by 
 

    
 

 
 

out

in

V s N s
H s

V s D s
   (3.1) 

 
where N( ) and D( ) are polynomials in the complex frequency variable s =  + j. The attenuation 
characteristic of the filter ( in dB ) can be written as 
 

  
 

 2
10 102

1
10log 10logA L

H
 



 
       

 (3.2) 

 
 The Butterworth filter is the most simple lowpass filter approximation to an ideal lowpass 
characteristic. It is frequently referred to as a maximally-flat filter because the attenuation characteristic 
has all of its derivatives with respect to  equal to zero at DC. Writing the loss function as 
 

  2 2

0

N
k

k
k

L B 


   (3.3) 

 
setting L( 0 ) = 1, and requiring all of the derivatives of L(  2 ) to be zero at DC requires all of the Bk to be 
zero except for the highest-order term. Consequently4, 
 

  2 21 N
ButterworthL     (3.4) 

 
The solutions to (3.4) are given by the 2N roots of unity as 
 

  2 1 exp 2  for arbitrary integer N
kp j j k k         (3.5) 

 
which leads to 
 

 
   2 1

exp     for 1,2,...,
2 2k

k
p j j k N

N

  
   

 
 (3.6) 

 
The poles must all fall within the left-half portion of the s-plane which requires that n  {1,2,…,N }. (The 
additional j  / 2 is convenient to keep the index range for n as given.) Butterworth poles for even- and 
odd-order cases5 are shown in Figure 3 and Figure 4. 

The voltage transfer function is given by 
 

  
1

N
k

k k

p
H s

s p

 
   
  (3.7) 

                                                      
4  The zeros of ButterworthL  are the attenuation poles of the filter. 
5  From u18217_butterworth_poles.m. 
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If the passband loss at frequency fpass is given by Apass (dB) and the minimum stopband loss at 
fstop is required to be Astop (dB), the minimum order for the Butterworth filter is then 
 

 

/10

10 /10

min

10

10 1
log

10 11

2
log

stop

pass

A

A

stop

pass

N
f

f

 
 

 
 
  
 

 (3.8) 

 
It is straight forward to show that the group delay for any all-pole filter like the Butterworth filter is 

given by 

  
 22

1

N
k

g
k k k

 
  

 
   

   
  (3.9) 

 
Group delay can also be calculated using Hilbert transforms as discussed later in §14. 
 
 

 
Figure 3 Normalized Butterworth poles for N = 8 

 
Figure 4 Normalized Butterworth poles for N = 7 

 Attenuation nomographs for the Butterworth lowpass filter family are provided in Figure 5 and 
Figure 6. 
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Figure 5 Butterworth filter attenuation versus normalized frequency and order6 

 

 
Figure 6 Butterworth filter nomograph for filter order versus stopband attenuation requirement7 

                                                      
6  Computed using u18217_butterworth_poles.m. 

10
0

10
1

0

10

20

30

40

50

60

70

80

Normalized Radian Frequency

F
ilt

e
r 

A
tte

n
u

a
tio

n
, d

B
Butterworth Filter Attenuation vs Order

N=1

N=2

N=10

10
-1

10
0

10
1

2

4

6

8

10

12

14

16

18

20

f
stop

/ f
pass

 - 1

M
in

im
u

m
 O

rd
e

r

Butterworth Filter Order

A
stop

 = 10 dB
A

stop
 = 20 dB

A
stop

 = 30 dB
A

stop
 = 40 dB

A
stop

 = 50 dB

A
stop

 = 60 dB

A
stop

 = 70 dB



U18213 LPF Designer Documentation.docx  10 of 136 

©James A Crawford 2012-15 U18213 Version 1.30 

 
Figure 7 Butterworth filter group delay8 

 
Figure 8 Radian frequency of peak group delay in Figure 7 versus Butterworth filter order9 

                                                                                                                                                                           
7  Computed using u18217_butterworth_poles.m. 
8  Ibid. 
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Figure 9 Peak group delay versus order for Butterworth filters 

The group delay characteristics for normalized Butterworth filters are shown in Figure 7 through 
Figure 10. The frequency at which the maximum group delay occurs asymptotically approaches 1 rad/s 
as shown in Figure 8, with the corresponding peak-delay value as shown in Figure 9. The peak-delay 
value is closely approximated by the 2nd-order approximation 
 

   2
max 0.3692 0.9529 0.0316   secN N N      (3.10) 

 
whereas the Butterworth filter group delay at DC is closely approximated by 
 

   0.1303 0.6245DC N N    (3.11) 

 
 The Butterworth filter time-domain impulse response can be found directly from knowledge of the 
pole locations given by (3.6). The residue method is particularly easy to employ for all-pole filters like the 
Butterworth family because none of the poles are repeated and there are no transmission zeros. Once 
the transfer function (3.7) has been expanded into a sum of partial fractions as 
 

      
1

exp exp
N

k k k
k

H f C t j t 


   (3.12) 

 
where the poles pk = k + jk and the Ck are given by 

 
1

k

N
n

k k
n n
n k s p

p
C p

s p
 

 
    

  (3.13) 

                                                                                                                                                                           
9  Ibid. 
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Figure 10 Group delay at DC for normalized Butterworth lowpass filters versus filter order 

 
the corresponding time-domain response is given by 
 

    
1

exp   for 0
N

k k
k

f t C p t t


   (3.14) 

 
Since complex poles must appear in conjugate pairs, (3.14) can be simplified to 
 

    m
m

f t g t  (3.15) 

where 
 

      2 cos 2 sin for complex pole, 0

for real pole

m

m

t
m m m m m

m t
m

e a t b t
g t

a e





        


 (3.16) 

 
with Cm = am + j bm, pk = k + j k, and m  { poles with positive or zero values for k }. Impulse responses 
for the first seven Butterworth order lowpass filters are provided in Table 1 and shown graphically in 
Figure 11. 
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Table 1 Butterworth (Normalized) Filter Impulse Responses10 

Filter 
Order, N 

Impulse Response 

1 te  
2  0.70711.4142 sin 0.7071te t  

3    /2 /2cos 0.86603 0.57735 sin 0.86603t t te e t e t     

4    
   

0.92388 0.92388

0.38268 0.38268

0.92388 cos 1.1152 2.2304 sin 1.1152

0.92388 cos 0.19134 0.38268 sin 0.19134

t t

t t

e t e t

e t e t

 

 



 
 

5    
   

0.30902 0.30902

0.80902 0.80902

1.8944 0.27639 cos 0.95106 0.85065 sin 0.95106

1.618 cos 0.58779 2.227 sin 0.58779

t t t

t t

e e t e t

e t e t

  

 

 

 
 

6    
   

 

0.25882 0.25882

0.70711 0.96593

0.96593

0.40825 cos 0.96593 0.70711 sin 0.96593

3.0472 cos 0.70711 2.639 cos 0.25882

4.5708 sin 0.25882

t t

t t

t

e t e t

e t e t

e t

 

 





   

7    
   
   

0.22252 0.22252

0.62349 0.62349

0.90097 0.90097

4.3119 0.73698 cos 0.97493 0.16821 sin 0.97493

2.065 cos 0.78183 2.5894 sin 0.78183

2.984 cos 0.43388 6.1962 sin 0.43388

t t t

t t

t t

e e t e t

e t e t

e t e t

  

 

 

 

 

 

 

 

 
Figure 11 Butterworth impulse responses corresponding to Table 1 

                                                      
10  Computed using u18217_butterworth_poles.m. 

0 2 4 6 8 10 12 14 16 18 20
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time, sec

R
e

sp
o

sn
e

Butterworth Impulse Responses

 

 

N = 2
N = 3

N = 4

N = 5

N = 6
N = 7



U18213 LPF Designer Documentation.docx  14 of 136 

©James A Crawford 2012-15 U18213 Version 1.30 

2.1 Design	of	Passive	LC	Butterworth	Lowpass	Filters	
 
Butterworth as well as other all-pole passive LC filters can be efficiently implemented using the ladder 
structure shown in Figure 12. The ladder structure has been shown to exhibit minimum sensitivity to 
component variations and is therefore widely used. In this normalized form, the source resistance G0 is 
always taken to be 1.0 whereas the load resistance RL = GN+1 can be equal to or less than 1.0 as given in 
the figure.  
 

1

1G

2G

2NG 

1NG 

NG
LR

1LR 

oddN

LR

2

1  (Butterworth)

tanh   (Chebyshev)
4

LR




   
 

 evenN

1NG 

NG

 
Figure 12 Lowpass ladder network 

The prototype Butterworth filter design formula are given below [1]. Several design examples are 
provided here to facilitate computer program verification in §2.1.1 and §2.1.2. 
 

 
 2

4

1
L

t

L

R
A

R



 (3.17) 

 1   (3.18) 

  1/(2 )
1

N

td A   (3.19) 

 2 2 2 cos   for 1, 2,...,k

k
b d d k N

N

       
 

 (3.20) 

 
 2 1

sin  for 1,2,...,
2k

k
a k N

N

 
  

 
 (3.21) 

 1
1

2a
G

d



 (3.22) 

 1

1 1

4
for 2,3,...,k k

k
k k

a a
G k N

b G


 

   (3.23) 
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2.1.1 Scenario	#1:	Equally	Terminated		
 

 
Figure 13 Calculation details for 5th-order equally-terminated Butterworth lowpass filter 

 

 
Figure 14 Calculation details for 8th-order equally-terminated Butterworth lowpass filter 

2.1.2 Scenario	#2:	Unequally	Terminated	
 

 
Figure 15 Calculation details for 4th-order unequally-terminated Butterworth lowpass filter 

Butterworth Lowpass Filter Design Rs= 1.0 Rl= 1

Order= 5 (<= 12)

At= 1

gamma= 1

d= 0

k= 1.0000 2.0000 3.0000 4.0000 5.0000  

bk= 1.0000 1.0000 1.0000 1.0000 1.0000  

ak= 0.3090 0.8090 1.0000 0.8090 0.3090  

Gk= 0.6180 1.6180 2.0000 1.6180 0.6180  

U18214 Tabulated LPF Prototype Design

Butterworth Lowpass Filter Design Rs= 1.0 Rl= 1

Order= 8 (<= 12)

At= 1

gamma= 1

d= 0

k= 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000

bk= 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ak= 0.1951 0.5556 0.8315 0.9808 0.9808 0.8315 0.5556 0.1951

Gk= 0.3902 1.1111 1.6629 1.9616 1.9616 1.6629 1.1111 0.3902

U18214 Tabulated LPF Prototype Design

Butterworth Lowpass Filter Design Rs= 1.0 Rl= 0.5

Order= 5 (<= 12)

At= 0.888888889

gamma= 1

d= 0.802741562

k= 1.0000 2.0000 3.0000 4.0000 5.0000  

bk= 0.3455 1.1483 2.1405 2.9433 3.2499  

ak= 0.3090 0.8090 1.0000 0.8090 0.3090  

Gk= 3.1331 0.9237 3.0510 0.4955 0.6857  

U18214 Tabulated LPF Prototype Design
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Figure 16 Calculation details for 8th-order unequally-terminated Butterworth lowpass filter 

 

 
Figure 17 LPF designer appearance for Butterworth case 

 

Butterworth Lowpass Filter Design Rs= 1.0 Rl= 0.5

Order= 8 (<= 12)

At= 0.888888889

gamma= 1

d= 0.871685543

k= 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000

bk= 0.1492 0.5271 1.0927 1.7598 2.4270 2.9926 3.3705 3.5032

ak= 0.1951 0.5556 0.8315 0.9808 0.9808 0.8315 0.5556 0.1951

Gk= 3.0408 0.9558 3.6678 0.8139 2.6863 0.5003 1.2341 0.1042

U18214 Tabulated LPF Prototype Design
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3 Chebyshev	Lowpass	Filters	
 
An insightful derivation of the Chebyshev filter approximation is given in [8] and [10] as briefly outlined 
here. The filter loss is again given by (3.2) but with L( 2 ) given by 
 

    2 2 21L F     (4.1) 

where  

 
/102 10 1passA    (4.2) 

 
The 4th-order normalized lowpass filter attenuation characteristic shown in Figure 18 facilitates the 
derivation greatly.  
 Chebyshev filters are specifically designed to exhibit equal-ripple attenuation in their passband 
region as shown in Figure 18 and this imposes several simple requirements on the behavior of F(  ) and 
L(  ) as follows: 
 

Requirement #1:   0F    at radian frequencies ±1 and ±3  

Requirement #2:  2 1F    at radian frequencies 0, ±2, ±1  

Requirement #3:  2 / 0dL d    at radian frequencies 0, ±1, ±2, ±3  

 
All of the k will temporarily be assumed to be unknown.  
 

 
Figure 18 Example passband attenuation characteristic for a normalized N = 4 Chebyshev lowpass filter 
having a passband ripple of 0.1 dB. Filter order is easily identified by noting the number of zero-crossings 
which occur between the attenuation characteristic and an auxiliary line drawn at one-half of the ripple 
magnitude as shown. 

Requirement #1 dictates that F(  ) be a polynomial given by 
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=
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F2(

2
)=1

dL(2)/d  = 0
=

3

F2(1)=1
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     2 2 2 2
1 1 3F M      (4.3) 

 
where M1 is a constant to be determined. From Requirement #2 
 

     2 2 2 2
2 21 1F M        (4.4) 

From Requirement #3, 

    2 2 21 2
dL d dF

F F
d d d

   
  

      (4.5) 

 
From Requirement #1, F(  ) must have zeros at ±1 and ±3 whereas dL / d is required to have 
additional zeros at 0 and ±2 which implies that dF / d must have the form 
 

  2 2
3 2

dF
M

d
 


   (4.6) 

 
In order for these latter zeros to survive the derivative with respect to  in F(  ), these zeros must, 
however, be double-roots in F(  ) which means that (4.4) must be modified to 
 

      22 2 2 2 2
2 21 1F M        (4.7) 

from which follows 

 
   

2
22 2 2

2 22

1

1

F
M


 




 


 (4.8) 

 
Comparing the factors in (4.8) with those in (4.6) makes it possible to write 
 

 
  22

42

1

1

F dF
M

d


 

      
 (4.9) 

 
Applying a square-root and separation of variables to (4.9) produces 
 

 5 2 21 1

dF d
M

F





 

 (4.10) 

 
which in turn can be written in terms of definite integrals as 
 

 5 62 20 01 1

F dF d
M M

F

 


 
 

   (4.11) 

 
Making use of the substitution u = cos(  ) in (4.11) produces 
 

    1 1
5 6cos cosM F M     (4.12) 

 
which can be rewritten as  

    
6

cos
5

cos
M

F
M 




 
  

 
 (4.13) 
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and only the constants remain to be identified. From Requirement #2, F (  ) = 1 for  = 1 which 
corresponds to  = 0 thereby dictating that M6  0. Similarly, the value of F for  =  / 2 dictates that M5  
1 / 4 thereby leading to the final result 

    1cos 4cosF       (4.14) 

 
This result can be generalized for an Nth-order Chebyshev filter as 
 

    1cos cosNF N      (4.15) 

 
This result (4.14) can be expanded in terms of cos(   ) as 

 

   2 41 8 8F       (4.16) 

 
where the right-hand side of (4.16) corresponds to the 4th-order Chebyshev polynomial represented by T4( 
 ). The first several Chebyshev polynomials along with their simple recursive construction formula are 
given by 
 

 

 
 
 
 
 
     

0

1

2
2

3
3

4 2
4

1 1

1

2 1

4 3

8 8 1

2n n n

T

T

T

T

T

T T T



 

 

  

  

    





 

 

  

 

 (4.17) 

 
The first few Chebyshev polynomials are plotted in Figure 19 for illustrative purposes. 
 

3.1 Required	Chebyshev	Filter	Order	
 
If the passband ripple up to frequency fpass is given by Apass (dB) and the minimum stopband loss at fstop is 
required to be Astop (dB), the minimum order for the Chebyshev filter is given by 
 

 

/10
1

/10

1

10 1
cosh

10 1

cosh

stop

pass

A

A

stop

pass

N
f

f





  
  

 
  
 

 (4.18) 

 
where a convenient relationship for cosh–1( x ) is 
 

    1 2cosh log 1ex x x     (4.19) 
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Figure 19 Chebyshev polynomials11 1st through 6th-order 

3.2 Chebyshev	Pole	Locations	
 
The Nth-order Chebyshev filter loss function can be rewritten using (4.1) while incorporating (4.15) as 
 

     2
2 11 cos cosNL N        (4.20) 

Defining  

 
 

 

1cos

expy j

 






 (4.21) 

permits (4.20) to be re-written as 

 

   

 

2

2 2 2

22

1 cos 1
2

1
           1

2

jN jN

N

N
Nj

j

e e
L N

e
e

 




   



 
     

 

          
     

 (4.22) 

which then leads to 

  
22

1
1

2
N

N N
L y y

y

           
 (4.23) 

 
This form is convenient for discussing elliptic lowpass filters as well as deriving the pole locations for 
Chebyshev filters. The roots which satisfy (4.23) can be found by solving  
 

                                                      
11  Using u18260_chebyshevPolynomials.m.  
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22 1
1 0

4
N

N
y

y

  
   

 
 (4.24) 

This can be rewritten as 

 

2

2

2

1 4

1 2

2
1 0   ( a quadratic in  )

N
N

N
N

N N N

y
y

y j
y

y j y y







 
   

 

  

 

 (4.25) 

 
Solving the quadratic leads to 

 
2

1 1
1Ny j j

 
     (4.26) 

The solutions to (4.26) are given by 
 

 
1

exp  for integers n
2ny r j n

N

       
 (4.27) 

 
with n  { 1, 2,…, N }. The magnitude of the roots given by 
 

 

1/

2

1 1
1

N

y r
 

 
     

 
 (4.28) 

From (4.21),  cos k k   the s-plane poles follow by noting that 

 

      exp exp 1 1
cos

2 2
k k k

k k k
k

j j s
y

y j

 
 

   
     

 
 (4.29) 

which results in  

 
1

2k k
k

j
s y

y

 
  

 
 (4.30) 

 
It is not obvious in this form, however, that the Chebyshev poles lie on an ellipse in the complex 

s-plane. Returning to (4.20), the poles sk must satisfy 
 

 1cos cos ks j
N

j 
  

   
  

 (4.31) 

 
Let k k ks j   in (4.31) and note that 

 
 

         

1 1cos cos

cos cos cosh sin sinh

k k
k k

k k

j
j u jv

j

j u jv u v j u v

   

 

  
    

 
    

 (4.32) 
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thereby leading to 

 
   
   

cos cosh

sin sinh

k

k

u v

u v







 
 (4.33) 

Also from (4.31), write 

  cos
j

N u jv


      (4.34) 

      cos cosh sin sinh( )
j

Nu Nv j Nu Nv


    (4.35) 

 
The solutions to (4.35) then become 

 

   

   

cos cosh 0

1
sin sinh

Nu Nv

Nu Nv




 
 (4.36) 

 
The solution to the first portion of (4.36) requires that 
 

 
 2 1

for 1,2,...
2

k
u k

N



   (4.37) 

 
whereas the second portion requires that 

 11 1
sinhv

N 
     
 

 (4.38) 

 
Using (4.37) and (4.38) in (4.33) finally results in  
 

 
 1 2 11 1

cosh sinh cos  for 1, 2,..., 2
2k

k
k N

N N





            

 (4.39) 

 
 1 2 11 1

sinh sinh sin  for 1, 2,..., 2
2k

k
k N

N N





             

 (4.40) 

 
From this final pair of results then, 

 
   

2 2

2 2
1

cosh sinh
k k

v v

 
   (4.41) 

 
and it becomes clear that the poles lie on an ellipse having parameters 
 

 

1

1

1 1
cosh sinh     (major-axis)

1 1
sinh sinh      (minor-axis)

a
N

b
N









       
       

 (4.42) 

 
 Two different Chebyshev lowpass filter examples are shown in Figure 20 through Figure 23. In 
the first case, the passband ripple is purposely made large (1 dB) in order to illustrate that this leads to 



U18213 LPF Designer Documentation.docx  23 of 136 

©James A Crawford 2012-15 U18213 Version 1.30 

higher quality poles (poles closer to the j-axis). As shown in the second case, the poles still lie on a very 
elliptical perimeter even for small passband ripple cases (0.1 dB). 
 Chebyshev lowpass attenuation characteristics for orders 1 through 10 are shown in Figure 24 
through Figure 28 for passband ripple parameters of 0.01 dB, 0.1 dB, 0.25 dB, 0.5 dB, and 1.0 dB 
respectively.  
 

 
Figure 20 N = 5 Chebyshev lowpass 
filter with 1 dB passband ripple12 

 
Figure 21 Filter gain characteristic13 corresponding to poles 
locations in Figure 20 

 

 
Group delay and impulse transient responses are shown in Figure 29 through Figure 37. Table 2 provides 
the 0.1 dB ripple Chebyshev impulse responses in mathematical form for N  7. 
 

                                                      
12  u18218_chebyshev_poles.m. 
13  Ibid. 
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Figure 22 N = 6 Chebyshev lowpass 
filter with 0.1 dB passband ripple 

 

 
Figure 23 Filter gain characteristic corresponding to poles 
locations in Figure 22 

 

 
Figure 24 Chebshev lowpass filter stopband attenuation characteristics 14  versus order for 0.01 dB 
passband ripple filters 

                                                      
14  Ibid. 
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Figure 25 Chebyshev lowpass filter stopband attenuation characteristics versus order for 0.10 dB 
passband ripple filters 

 
Figure 26 Chebyshev lowpass filter stopband attenuation characteristics versus order for 0.25 dB 
passband ripple filters 
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Figure 27 Chebyshev lowpass filter stopband attenuation characteristics versus order for 0.50 dB 
passband ripple filters 

 
Figure 28 Chebyshev lowpass filter stopband attenuation characteristics versus order for 1.0 dB 
passband ripple filters 
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Figure 29 Chebyshev lowpass filter group delay characteristics for 0.01 dB passband ripple case 

 
Figure 30 Chebyshev lowpass filter group delay characteristics for 0.1 dB passband ripple case 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

Normalized Radian Frequency

G
ro

u
p

 D
e

la
y,

 s

Chebyshev Filter Group Delay

0.01 dB

N = 10

N = 1

N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

N = 8

N = 9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

Normalized Radian Frequency

G
ro

u
p 

D
e

la
y,

 s

Chebyshev Filter Group Delay

0.1 dB

N = 1

N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

N = 8

N = 9

N = 10



U18213 LPF Designer Documentation.docx  28 of 136 

©James A Crawford 2012-15 U18213 Version 1.30 

 
Figure 31 Chebyshev lowpass filter group delay characteristics for 0.5 dB passband ripple case 

 

Figure 32 Peak group delay for 0.01 dB ripple 
Chebyshev lowpass filters versus filter order 

Figure 33 Peak group delay for 0.1 dB ripple 
Chebyshev lowpass filters versus filter order 
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Figure 34 Peak group delay for 0.5 dB ripple 
Chebyshev lowpass filters versus filter order 

 
Figure 35 Impulse response for 0.01 dB ripple 
Chebyshev lowpass filters versus filter order 

 
Figure 36 Impulse response for 0.1 dB ripple 
Chebyshev lowpass filters versus filter order 

 
Figure 37 Impulse response for 0.5 dB ripple 
Chebyshev lowpass filters versus filter order 
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Table 2 Chebyshev (Normalized) Filter Impulse Responses15 for 0.1 dB Passband Ripple Case 

Filter 
Order

N 

Impulse Response16 

1  
2    1.18622.3998 e sin 1.3809tf t t  

3      0.96941 0.4847 0.48470.96941 0.96941 cos 1.2062 0.38956e sin 1.2062t t tf t e e t t      

4      
   

0.63773 0.63773

0.26416 0.26416

1.386 sin 0.465 0.40683 cos 0.465

         0.4387 sin 1.1226 0.40683 cos 1.1226

t t

t t

f t e t e t

e t e t

 

 

 

 
 

5      
   

0.53891 0.43599 0.43599

0.16653 0.16653

0.68706 0.56938 sin 0.66771 0.87198e cos 0.66771

           0.33256 sin 1.0804 0.18492 cos 1.0804

t t t

t t

f t e e t t

e t e t

  

 

  

 
 

6      
   
   

0.42804 0.42804

0.31335 0.31335

0.11469 0.11469

1.1455 sin 0.28309 0.32543 cos 0.28309

            0.52372 sin 0.77343 0.58624 cos 0.77343

             0.062738 sin 1.0565 0.26081 cos 1.0565

t t

t t

t t

f t e t e t

e t e t

e t e t

 

 

 

 

 



 

7    
   
   

0.37678 0.33947

0.33947 0.23492

0.23492 0.083841

0.56253 0.48721 sin 0.46366

        0.84662 cos 0.46366 0.52433 sin 0.83549

        0.28409 cos 0.83549 0.19529 sin 1.0418

t t

t t

t t

f t e e t

e t e t

e t e t

 

 

 

 

 

 

 

 

3.3 Design	of	Passive	LC	Chebyshev	Lowpass	Filters	
 
The design formula for Chebyshev filters are understandably similar to those for the Butterworth case. 
The formula adopted here are based upon the work provided in [2].17 The filter configuration is again 
shown in Figure 12.  
 Assuming that the filter order is given by N, let the passband ripple be represented by Arip in dB. 
Then define 

 
/1010 1ripA    (4.43) 

and 
 

 
 

 
 

2

2
2

4
for  odd

4
1 for  even

load

source load

load

source load

R
N

R R
a

R
N

R R



  
 
 

 (4.44) 

 
 
Then compute 

                                                      
15  Computed using u18218_chebyshev_poles.m. 
16  Calculated in u18218_chebyshev_poles.m. 
17  In spite of multiple attempts, the design formula provided in [1] were not valid for resistive load cases with RL < 1.0. 
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2sin
2

2cos
2

i

i

i

N

i

N





   
 
   
 

 (4.45) 

 
for i = 1,2,…,N. Define two additional parameters 
 

 

1/

2

1/

2 2

1 1
1

1 1
1

N

N

a a


 


 

 
    
 

  
    
 

 (4.46) 

and from here 

 

1

1

x

y







 

 
 (4.47) 

The first prototype filter value is given by 

 1
1

2
G

x y





 (4.48) 

 
whereas the remaining prototype parameters are recursively given by 
 

 
   

 
1 1 2

1

4
for 2,3,...,

1, ,
nm k nm k

k
k

G k N
b k x y G

   



 


 (4.49) 

 
where 

   2 1nm j j   (4.50) 

   2 2 2
2 2, , j jb j x y x xy y      (4.51) 

 
Several design examples are provided here to facilitate computer program verification in Figure 38 
through Figure 41. 
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Figure 38 Calculation details for 3rd-order unequally-terminated Chebyshev lowpass filter 

 

 
Figure 39 Calculation details for 4th-order unequally-terminated Chebyshev lowpass filter 

 

Chebyshev Lowpass Filter Design Rs= 1.0 Rl= 0.5

Order= 3 (<= 10) Ripple, dB= 0.1

epsilon= 0.152620419

At= 0.888888889

gamma= 2.362153866

d= 1.66143653

x= 1.938811418

y= 1.059547753

k= 1.0000 2.0000 3.0000 4.0000 5.0000  

alpha_k= 1.0000 1.7321 2.0000 1.7321 1.0000  

beta_k= 1.7321 1.0000 0.0000 ‐1.0000 ‐1.7321  

b()= 5.8274 9.9359 8.9902 9.9359 5.8274  

nm()= 1.0000 3.0000 5.0000 7.0000 9.0000  

Gk= 2.2746 0.6035 1.3341      

U18215 Tabulated Chebyshev LPF Prototype Des

Chebyshev Lowpass Filter Design Rs= 1.0 Rl= 0.5

Order= 4 (<= 10) Ripple, dB= 0.1

epsilon= 0.152620419

At= 0.909593771

gamma= 1.905377961

d= 1.4298148

x= 1.380547706

y= 0.730423523

k= 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

alpha_k= 0.7654 1.4142 1.8478 2.0000 1.8478 1.4142 0.7654

beta_k= 1.8478 1.4142 0.7654 0.0000 ‐0.7654 ‐1.4142 ‐1.8478

b()= 3.0134 6.4394 5.8655 4.4562 5.8655 6.4394 3.0134

nm()= 1.0000 3.0000 5.0000 7.0000 9.0000 11.0000 13.0000

Gk= 2.3545 0.7973 2.6600 0.3626      

U18215 Tabulated Chebyshev LPF Prototype Des
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Figure 40 Calculation details for 5th-order unequally-terminated Chebyshev lowpass filter 

 
 

 
Figure 41 Calculation details for 6th-order unequally-terminated Chebyshev lowpass filter 

 
 
 
 
 

Chebyshev Lowpass Filter Design Rs= 1.0 Rl= 0.5

Order= 5 (<= 10) Ripple, dB= 0.1

epsilon= 0.152620419

At= 0.888888889

gamma= 1.674884679

d= 1.356095432

x= 1.077828648

y= 0.618684202

k= 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000  

alpha_k= 0.6180 1.1756 1.6180 1.9021 2.0000 1.9021 1.6180 1.1756 0.6180  

beta_k= 1.9021 1.6180 1.1756 0.6180 0.0000 ‐0.6180 ‐1.1756 ‐1.6180 ‐1.9021  

b()= 1.8475 4.7504 5.5746 4.0054 2.8782 4.0054 5.5746 4.7504 1.8475  

nm()= 1.0000 3.0000 5.0000 7.0000 9.0000 11.0000 13.0000 15.0000 17.0000  

Gk= 2.6921 0.8042 3.3882 0.6853 1.4572          

U18215 Tabulated Chebyshev LPF Prototype Des

Chebyshev Lowpass Filter Design Rs= 1.0 Rl= 0.5

Order= 6 (<= 10) Ripple, dB= 0.1

epsilon= 0.152620419

At= 0.909593771

gamma= 1.536930013

d= 1.269170178

x= 0.886282299

y= 0.481253776

k= 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000  

alpha_k= 0.5176 1.0000 1.4142 1.7321 1.9319 2.0000 1.9319 1.7321 1.4142 1.0000 0.5176  

beta_k= 1.9319 1.7321 1.4142 1.0000 0.5176 0.0000 ‐0.5176 ‐1.0000 ‐1.4142 ‐1.7321 ‐1.9319  

b()= 1.2783 3.5906 5.0171 4.4436 2.7559 1.8702 2.7559 4.4436 5.0171 3.5906 1.2783  

nm()= 1.0000 3.0000 5.0000 7.0000 9.0000 11.0000 13.0000 15.0000 17.0000 19.0000 21.0000  

Gk= 2.5561 0.8962 3.3962 0.8761 2.8071 0.3785            

U18215 Tabulated Chebyshev LPF Prototype Des
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4 Inverse	Chebyshev	Lowpass	Filters	
 

The Chebyshev loss characteristic was given earlier by (4.1) where  F   was given by (4.15) which 

was an Nth-order Chebyshev polynomial. The power-gain characteristic for the frequency-normalized 
inverse Chebyshev lowpass filter is given by 
 

    
 

2

10 210 log   dB
1

F
P

F

 


 

    
  

 (5.1) 

where 

 
0.0510 stopdBA   (5.2) 

   1 1
cos cosF N


       

 (5.3) 

 
and AstopdB is the minimum equal-ripple stopband attenuation required in dB. Parameter N is the order of 
the filter. The  corresponding to the associated Chebyshev filter is given by 
 

 
21







 (5.4) 

 
The (normalized) –3 dB passband frequency is given by 
 

 3
1

1

1 1
cosh cosh

dB

N







  

    

 (5.5) 

 

The (normalized) radian frequency at which the passband gain is passdBA  is given by 

 

 

1 0

0

1

1 1
cosh cosh

1

pass

N




 



  
  

   

 (5.6) 

where 

 
0.1

0 10 passdBA   (5.7) 

 
The (normalized) poles for the associated Chebyshev filter are given by 
 

 

   

   

1 0

1 0

2 1
sinh sin

2

2 1
cosh cos

2

kk

kk

poles

poles

k

N

k

N


 


 

 
   

 
 

  
 

 (5.8) 

for  0,1,..., 1k N  where 
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 1
0

1 1
sinh

N



    
 

 (5.9) 

 
The (normalized) poles for the inverse Chebyshev filter are found from the associated Chebyshev poles 
as 

 
   

   

1

2 2

1 1

1

2 2

1 1

k

k

k k

k

k

k k

poles
poles

poles poles

poles
poles

poles poles




 




 







 (5.10) 

 
The (normalized) zeros for the inverse Chebyshev filter are given by 
 

 
 

1

2 1
cos

2

kzeros k

N





 

 
 

 (5.11) 

 
Unlike the Butterworth or Chebyshev poles, the poles of the inverse Chebyshev filter do not follow 

a recognizable pattern. This fact is illustrated18 in Figure 42 and Figure 43 with the associated attenuation 
characteristics shown in Figure 44 and Figure 45. 
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Figure 42 Inverse Chebyshev normalized pole 
locations for N = 9 and 20 dB minimum stopband 
attenuation 
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Figure 43 Inverse Chebyshev normalized pole 
locations for N = 9 and 50 dB minimum stopband 
attenuation 

 
 
 

 

                                                      
18  From U22136 Inverse Chebyshev.mcd. 
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Figure 44 N = 9 inverse Chebyshev filter with 20 dB 
minimum stopband attenuation 
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Figure 45 N = 9 inverse Chebyshev filter with 50 
dB minimum stopband attenuation 
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Figure 46 Close-up of passband characteristic for N = 9 inverse Chebyshev filter exhibiting 50 dB 
minimum stopband attenuation 

The attenuation characteristic of some inverse Chebyshev filters like that shown in Figure 45 could easily 
be mistaken for an elliptical filter. The distinguishing characteristic between the two filters is that the 
elliptical filters are equal-ripple in the passband as well as the stopband whereas the inverse Chebyshev 
filters are not. A close-up of the passband characteristic associated with Figure 45 is shown in Figure 46. 
 Interestingly enough, the inverse Butterworth characteristic (if attempted) results in the original 
Butterworth filter! This occurs because all of the (normalized) Butterworth poles lay on a unit-circle which 
results in the denominator values in (5.10) all being unity. 
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5 Gaussian	Lowpass	Filters	
 
The Paley-Weiner criterion determines whether a specified amplitude response can be physically realized 

by a causal filter or not [19]. If the amplitude response in question is represented by  H j , 

realizability demands that 
 

 
 

2

log

1

e H j
d










    
  (5.12) 

 
 For the true Gaussian-shaped attenuation characteristic,  
 

   2
0 1expGaussH j k k      (5.13) 

Consequently, 

 
  2

0 1
2

log

1
e k k

d












  (5.14) 

 
This result means that the true Gaussian filter shape can only be approximated over a finite frequency 
range in order for the filter to be physically realizable. 
 The only design parameters for the approximate Gaussian filters are (i) the extent of the 
approximation which is usually taken as attenuation levels of 6 dB or 12 dB, and (ii) the order of the filter. 
Williams [4] refers to these filters as transitional filters in that the characteristics lie between the 
Chebyshev and Bessel filter families. Other so-called transitional filters can be constructed between the 
Butterworth and Bessel filter families of course. The derivation details behind the transitional filters in 
Williams is sketchy at best and seems to have been lost in antiquity! Williams comments that these filters 
were generated by mathematical techniques which involve interpolation of pole locations, but no other 
details are provided. These approximate Gaussian filters are all-pole in nature and the filter poles are 
given in Table 3.  
 

 
Figure 47 8th-order Gaussian, Butterworth, and Bessel filters compared19 

                                                      
19  From u22365_transitional_filters.m. 
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Figure 48 Poles locations of 8th-order 
Bessel, Butterworth, and Gaussian filters 
compared20 

     The attenuation characteristics of the 8th-order 
Butterworth, Bessel, and Gaussian to 6 dB filters are 
compared in Figure 47. The pole locations for these same 
filters are compared in Figure 48. Group delay 
characteristics for the filters are compared in Figure 49. 

Figure 49 Group delay filter characteristics compared21 

Several of the Gaussian to 6 dB filters are compared to the 
ideal Gaussian filter shape in Figure 50. The filters break 
from the ideal Gaussian shape at different radian 
frequencies depending upon the order of the filter. Within 
the 6 dB filter bandwidth, the approximate Gaussian filters 
approximate the ideal Gaussian shape in an almost equal-
ripple manner as shown in Figure 51. 
 

Table 3 Normalized Gaussian Filter Poles22 

Gaussian to 6 dB  Gaussian to 12 dB 
Order      Order     

3 0.9622 
0.9776 

1.2214  3 0.9360 
0.9630 

1.2168 

4 0.7940 
0.6304 

0.5029 
1.5407 

 4 0.9278 
0.9192 

1.6995 
0.5560 

5 0.619 
0.3559 
0.6650 

0.8254 
1.5688 

 5 0.8075 
0.7153 
0.8131 

0.9973 
2.0532 

6 0.5433 0.3431  6 0.7019 0.4322 

                                                      
20  From u22365_transitional_filters.m. 
21  From u22365_transitional_filters.m. 
22  Tables 12-50 and 12-51 from [4]. 
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Gaussian to 6 dB  Gaussian to 12 dB 
Order      Order     

0.4672 
0.2204 

0.9991 
1.5067 

0.6667 
0.4479 

1.2931 
2.1363 

7 0.4580 
0.3649 
0.1522 
0.4828 

0.5932 
1.1286 
1.4938 

 7 0.6155 
0.5486 
0.2905 
0.6291 

0.7703 
1.5154 
2.1486 

8 0.4222 
0.3833 
0.2878 
0.1122 

0.2640 
0.7716 
1.2066 
1.4798 

 8 0.5441 
0.5175 
0.4328 
0.1978 

0.3358 
0.9962 
1.6100 
2.0703 

9 0.3700 
0.3230 
0.2309 
0.08604 
0.3842 

0.4704 
0.9068 
1.2634 
1.4740 

 9 0.4961 
0.4568 
0.3592 
0.1489 
0.5065 

0.6192 
1.2145 
1.7429 
2.1003 

10 0.3384 
0.3164 
0.2677 
0.1849 
0.06706 

0.2101 
0.6180 
0.9852 
1.2745 
1.4389 

 10 0.4535 
0.4352 
0.3886 
0.2908 
0.1136 

0.2794 
0.8289 
1.3448 
1.7837 
2.0599 

 
 

Figure 50 Gaussian to 6 dB filters compared to the 
ideal Gaussian filter shape23 

 

Figure 51 Gaussian to 6 dB filters compared to the 
ideal Gaussian shape. 24  The former approximate 
the ideal Gaussian shape in nearly a Chebyshev 
manner as shown. 

 
 
 
 

                                                      
23  Using u22357_gaussian_to_xdb.m or u22365_transitional_filters.m. 
24  Ibid. 
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5.1 Approximate	Gaussian	Filters	
 
The Gaussian to x dB filter approximations in Table 3 appear to be some kind of Chebyshev curve-fit in 
the passband with the ideal Gaussian shape, transitioning to a stopband shape that has the steepness of 
traditional Chebyshev filters. As mentioned earlier, however, the precise objective filter shape seems to 
have been lost in antiquity. 
 Some experimentation with a candidate function has proved promising, however25. The passband 
frequency edge fp is defined here as the frequency at which the ideal Gaussian shape exhibits xdB of 
attenuation. More specifically, 
 

 

  
  

     

2

10

2

2

10 log exp  dB

log exp
10

10
log 10 log 10

dB p

e p

p
e e

x f

f
f






     

     

 (5.15) 

 

The –3 dB frequency is consequently given by 
 

3

3log 10
0.83113

10
e

dBf    and this relationship 

can be used to compute   for a specified –3 dB bandwidth value. 

 Similarly, the Nth-order Chebyshev stopband attenuation is given by 
 

   2 2 1
_ 1010 log 1 cosh cosh  dBcheby dB

rip

A N
 



               

 (5.16) 

 

where rip is the radian frequency associated with the ripple bandwidth and  

 

 
/1010 1ripA    (5.17) 

 
for a passband ripple of Arip dB. The radian frequency at which the Chebyshev filter attenuation is xdB is 
given by 

 
/10

1
/10

1 10 1
cosh cosh

10 1

dB

rip

x
xdB

A
rip N





         

 (5.18) 

 
Equations (5.15) and (5.18) can be used to ensure that the objective attenuation characteristic is 

piecewise continuous in nature. Assuming that the –3 dB radian frequency for the Gaussian filter is 

known, the value for   is given by 30.83113 / dBf   and the frequency associated with dBx of 

attenuation is  

 
 log 101

10
e

p dBf x


  (5.19) 

 

From here, xdB  is calculated directly using (5.18). 

The complete objective attenuation function is then given by 

                                                      
25  u22357_gaussian_to_xdb.m. 
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 (5.20) 

 
  The attenuation for the all-pole filter can be written as 
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(5.21) 

 
where the filter poles pk are assumed to be ordered appropriately. 
 For an individual complex pole, it is straight forward to show that the partial derivatives of interest 
are 

 
 

   
 
   

2 2 2 2

22 2 22 2 2

240 40

log 10 log 10 2

k k k kdB k

k e k k e k k k

A       
       

  
 

   
 (5.22) 
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2 2 2 2

22 2 22 2 2
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k k k kdB k

k e k k e k k k

A       
       

  
 

   
 (5.23) 

 
 A simple gradient-based least-mean-square solution usually finds a very good solution but the 
objective function choice still results in a bit more ripple near the passband edge than the original 
transitional filters given by Zverev and Williams. 
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6 Adjustable	Gaussian	Lowpass	Filters	
 
The folks at Iowa Hills Software26 have scripted a new type of filter they call adjustable Gaussian lowpass 
filters. The filter family is said to be a compromise between a Gaussian filter and a Butterworth filter by 
way of a single parameter  which will be described shortly. 
 This filter is an all-pole filter. The polynomial associated with its loss function (e.g., see (3.4)) is 
given by 

   2 4 6 8 101 1 1 1
1  

2! 3! 4! 5!
P s s s s s s

   
                    
       

  (5.24) 

 
where the maximum order of s is equal to two-times the order of the filter. The poles of (5.24) reside in 
both halves of the complex s-plane whereas only the poles in the left-half plane are retained for the 
physical filter implementation. 
 For programming purposes, Iowa Hills constrains the user’s  such that 1 1    but the sign of 

the value is subsequently flipped, and the value multiplied by two if the user’s value is greater than zero. 
Iowa Hills also scales-up the imaginary portion of each pole by a factor of 1.1 to improve filter group delay 
flatness.  
 A number of design examples follow27. One notable difference compared to the Iowa Hills results 
is that the computed filter poles are frequency-scaled so that the maximum pole modulus is always unity. 
 

 
Figure 52 Example pole placement for 7th-order 
filter 

 
Figure 53 Example pole placement for 11th-order 
filter 

 
                                                      
26  http://www.iowahills.com/7AAdjGaussAlgorithm.html . 
27  u22176_adjustable_gaussian.m. 
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Table 4 Attenuation and Group Delay for 7th-Order Filters Versus  

 
 

 
 

 

 
Table 5 Impulse and Step-Responses for 7th-Order Filters Versus  
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7 Bessel	Filters	
 
Bessel filters are known for their very flat group delay characteristic and associated pristine impulse 
response. Bessel filters are all-pole filters in which the poles can be determined by equally spacing the 
imaginary parts of the poles and choosing the real part of the poles such that they all lie on a circle [21]. 
Pole placement for a 5th-order Bessel filter is shown in Figure 54. 
 

 
Figure 54 Pole placement for 5th-order 
Bessel lowpass filter 

The transfer function of the Bessel filter is a rational function 
whose denominator is a reverse Bessel polynomial, such as 
those given in Table 6.28 
      The (reverse) Bessel polynomials of Table 6 are 
mathematically given by 
 

          ,
0

n
k

n n k
k

s a s


                                          (5.25) 

where 

        
 

 ,

2 !

2 ! !n k n k

n k
a

k n k





 (5.26) 

 
The (reverse) Bessel polynomials may also be formulated 
using a recursion formula where 
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2
1 2

1

1
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 

  

 (5.27) 

 
For an nth order filter, the first n – 1 terms in the series 
expansion for the group delay are zero, thereby maximizing 
the flatness at zero frequency. 

Table 6 Reverse Bessel Polynomials 

n Reverse Bessel Polynomial 
1 1s   
2 2 3 3s s   
3 3 26 15 15s s s    
4 4 3 210 45 105 105s s s s     
5 5 4 3 215 105 420 945 945s s s s s      

 
  

                                                      
28  Wikipedia, “Bessel filter”. 
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8 Linear	Phase	Filters	
 
A closed-form method for computation of the pole locations is not available for linear phase filters. The 
pole locations are developed by iterative techniques [4]. Poles for equiripple linear phase filters of 0.05o 
and 0.50o error are provided in Table 7. 
 
Table 7 Linear Phase Filter Poles from [4] 

 0.05o Error  0.50o Error 
N Real Part 

– 
Imag Part 

j 
 Real Part 

– 
Imag Part 

j 
2 1.0087 0.6680  0.8590 0.6981 
3 0.8541 

1.0459 
1.0725  0.6969 

0.8257 
1.1318 

4 0.9648 
0.7448 

0.4748 
1.4008 

 0.7448 
0.6037 

0.5133 
1.4983 

5 0.8915 
0.6731 
0.9430 

0.8733 
1.7085 

 0.6775 
0.5412 
0.7056 

0.9401 
1.8256 

6 0.8904 
0.8233 
0.6152 

0.4111 
1.2179 
1.9810 

 0.6519 
0.6167 
0.4893 

0.4374 
1.2963 
2.0982 

7 0.8425 
0.7708 
0.5727 
0.8615 

0.7791 
1.5351 
2.2456 

 0.6190 
0.5816 
0.4598 
0.6283 

0.8338 
1.6453 
2.3994 

8 0.8195 
0.7930 
0.7213 
0.5341 

0.3711 
1.1054 
1.8134 
2.4761 

 0.5791 
0.5665 
0.5303 
0.4184 

0.3857 
1.1505 
1.8914 
2.5780 

9 0.7853 
0.7555 
0.6849 
0.5060 
0.7938 

0.7125 
1.4127 
2.0854 
2.7133 

 0.5688 
0.5545 
0.5179 
0.4080 
0.5728 

0.7595 
1.5089 
2.2329 
2.9028 

10 0.7592 
0.7467 
0.7159 
0.6475 
0.4777 

0.3413 
1.0195 
1.6836 
2.3198 
2.9128 

 0.5249 
0.5193 
0.5051 
0.4711 
0.3708 

0.3487 
1.0429 
1.7261 
2.3850 
2.9940 
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Table 8 Linear Phase to 0.50o Filter Characteristics29 

  

 
 
 

                                                      
29  u22437_linphase_0pt50.m. 
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Table 9 Linear Phase to 0.05o Filter Characteristics30 
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9 Transitional	Filters	
 
A fairly wide variety of transitional filters can be found in the literature. For example, BeBut filters are 
defined in [22] as a filter family which transition from the Bessel shape to the Butterworth shape. These 
filters are obtained via the recurrent relationship 
 

      1 1

2
n n n

n d
u s u s u s

s 

    
 (5.28) 

 
where n  1, d is a design parameter between 0 and 1, and 
 

 

 

 

0

1

1

1
1

u s

u s
s



 
 (5.29) 

 
When d = 1, the resulting polynomials correspond to Bessel filters whereas d = 0 corresponds to filters 
very similar to Butterworth filters. For the d = 1 case (Bessel), the first few polynomials are 
 

 

 

 

 

 

 
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2 2

3 2 3

4 2 3 4

1

1
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3 3
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1

10 45 105 105
1

w s

w s
s

w s
s s

w s
s s s

w s
s s s s



 

  

   

    

 (5.30)  

 
The normal procedure is to cast a given polynomial into is normal form as 
 

   1 2
1 2 0

n n n
n n np s s a s a s a 

       (5.31) 

 
from which the transfer function follows as 
 

    
0 0

1 2
1 2 0

n n n n
n n n

a a
T s

p s s a s a s a 
 

 
   

 (5.32) 

 
In the case where d = 0, the 4th-order transfer function is given by 
 

  4 4 3 2

48

8 32 48 48
T s

s s s s


   
 (5.33) 
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Example pole loci31 for a 5th-order and 8th-order BeBut filters as a function of parameter d are shown in 
Figure 55 and Figure 56. The pole locations do not mimic the Butterworth filter case very well, but the 
step-response of the filters are quite reasonable as shown in Figure 57 and Figure 58. The associated 
frequency-domain responses are shown in Figure 59 and Figure 60. 
 

 
Figure 55 Pole loci 32  for 5th-order 
BeBut filter. d = 0 corresponds to the 
black diamonds whereas d = 1 
correspond to the green triangles.  

 
Figure 56 Pole loci for 8th-order BeBut filter. d = 0 corresponds 
to the black diamonds whereas d = 1 correspond to the green 
triangles.   

 
 
 
 

                                                      
31  Computed using u22393_bebut_filters.m. 
32  From u22393_bebut_filters.m. 
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Figure 57 5th-order filter case step-response33 
 

Figure 58 8th-order filter case step-response 

Figure 59 5th-order filter case34 Figure 60 8th-order filter case 

 

                                                      
33  Computed using u22393_bebut_filters.m. 
34  Computed using u22393_bebut_filters.m. 
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10 Elliptic	Lowpass	Filters35	
 
Elliptic filters exhibit equal loss maximums in the passband and equal loss minimums in the stopband; 
they are often said to be equal-ripple in the passband and stopband. This filter type is more complicated 
than the Butterworth and Chebyshev filters considered thus far, so the discussion which follows is fairly 
lengthy. 
 Elliptic filters are first introduced here by considering a 5th-order elliptic lowpass filter. Most of the 
discussion is focused on the filter’s loss characteristic denoted by L(  2 ). This naturally leads to material 
about the Jacobi elliptic functions and how they can be used to compute the poles and zeros of the 
transducer gain T ( s ) function (See §1.2). 
 Early contributors ( e.g., Saal & Ulbrich [18] ) were more inclined to study elliptic filters in terms of 
their characteristic function which is denoted here by K (s). This notation is unfortunate given that the 
complete elliptic integral of the first kind is denoted by K, but retaining the functional dependence on s 
should be sufficient to keep these two uses clearly separated. The ideal elliptic loss characteristic is not 
realizable without mutually-coupled transformers and or at least one negative component value for even-
order LC filters. This difficulty is circumvented by developing multiple filter types (denoted by types a, b, 
and c) as discussed later in §10.3.1 and §10.3.2 for the even-order case. Odd-order elliptic filters are 
naturally symmetric and therefore more straight forward to design. Elliptic filter synthesis has traditionally 
been based upon the characteristic function approach (e.g., [18]) whereas the methodology due to 
Amstutz [11] is adopted here for the filter synthesis portion of this paper. 

10.1 	5th‐Order	Elliptic	Filter	Loss	Characteristic	
 
A representative loss characteristic for a 5th-order elliptic lowpass filter is shown in Figure 61. The 
passband and stopband frequency edges are respectively defined as 
 

 1

pass

stop

k

k








 (6.1) 

 
where the ratio of passband to stopband frequencies is given by 
 

 1pass

stop

k



   (6.2) 

 
Elliptic filters are frequently referred to in terms of their order, maximum passband reflection coefficient, 
and their modular angle . The passband reflection coefficient magnitude and passband attenuation ripple 
are related by 
 

  2

1010 log 1  dBpassA     (6.3) 

 
whereas the modular phase angle is given by 

 1sin pass

stop






 

   
 

 (6.4) 

 

                                                      
35  There are a number of excellent treatises on the design of elliptic filters, notably [7], [8], [10], and [11]. 
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It is convenient to further define  
 

 

/10

/10

10 1

10 1

pass

stop

A

p

A

s





 

 
 (6.5) 

 

0.1

1 0.1

10 1
1

10 1

pass

stop

A
p

A
s

k




 


  (6.6) 

 
Analogous with the Chebyshev lowpass case, define the loss function as 
 

    2 2 21 pL F     (6.7) 

which is given in decibel form as 
 

    2
1010 log   dBdBA L      (6.8) 

 
As true earlier for the Chebyshev filter case, F (  ), L ( 2 ), and L ( –s2 ) are all given by polynomial 
ratios. Following the lead information provided in Figure 61, the 5th-order elliptic lowpass filter must exhibit 
the following characteristics: 
 

Requirement #1:   2 40 at 0, ,F       

 

Requirement #2:   5 7 at , ,F         

 

Requirement #3:  2
1 31 at , , passF k           

Requirement #4:  2
6 82

1

1 1
 at , , stopF

k k
             

Requirement #5: 
 2

1 3 6 80 at , , ,
dL

d





       

 
From Requirements #1 and #2, F(  ) must have the form 
 

     
  

2 2 2 2
2 4

1 2 2 2 2
5 7

F M
  


 

 


 
 (6.9) 

 
where the Mn are arbitrary constants. From Requirement #2 and #3, 1 – F2 (  ) must be zero at the 
specified frequencies so that 
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Figure 61 5th-order elliptic lowpass filter36 with Apass = 2 dB, Astop = 40 dB, fpass = 1 Hz, fstop = 1.2 Hz 

        
   

2 2 22 2 2 2 2
1 32

2 2 22 2 2 2
5 7

1
k

F M
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
 

  
 

 
 (6.10) 

 
The additional squaring of the two numerator terms is in anticipation of Requirement #5. Similarly from 
Requirements #2, #4, and #5 

  
   
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2
2 22 2 2

6 8
2 2

1 3 2 22 2
5 7

1

1
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
 

    
  

 
 (6.11) 

 
Requirement #5 along with the denominator portion of F (  ) already present in (6.9) dictates that 
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 

   
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    
   

 (6.12) 

                                                      
36  Computed using u18310_multi_lpf_designer.m. 
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Upon squaring (6.12) and then making use of (6.10) and (6.11), equation (6.12) can be rewritten as 
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1 1
         

1
1
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d k

F k F
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k
k

 
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 

 

        
        
 
                    

 (6.13) 

 
In differential form, (6.13) can be further simplified as 
 

 

    
6

22 2 2
211 1

1 1

dF d
M

F k F
k

k



 


     
 

 (6.14) 

 

Substituting /y k into the right-hand side of (6.14) and performing the implied definite integration 

leads to 
 

 

     
/

7 8
2 2 2 2 2 2

0 011 1 1 1

F kdx dy
M M

x k x y k y



 
   

   (6.15) 

 

Both sides of (6.15) involve an elliptic integral which becomes more obvious by substituting  sinx   

into the left-hand side, and  siny   into the right-hand side. These substitutions transform (6.15) into 

 

 
 

 

 

 11 sin /sin

7 82 2 2 2
0 011 sin 1 sin

kF
d d

M M
k k

   
 

 

 
 

   (6.16) 

 
Defining 

 
 2 2

0 1 sin

d
z

k

 





  (6.17) 

the solution to (6.16) can be expressed in terms of two simultaneous equations given as 
 

    sin ,sn z k
k

    (6.18) 

 

    7 8 1sin ,F sn M z M k    (6.19) 

 
where sn ( u, v ) is known as the elliptic sine function. 
 Based upon the information developed thus far along with the material in §10.7.1, §10.7.4, and 
§10.7.3, it can be shown that (for N is odd) 
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    
1

( 1)/2 2 22
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2 2
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zero n

n zero n

F
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




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




   (6.20) 

 
where the attenuation zeros of the elliptic filter are given by 
 

 ,

2 1
,   for n 1, 2,...,

2zero n

Kn N
k sn k

N

    
 

 (6.21) 

 
K is the complete elliptic integral (See §10.7.1), and N is the filter order. The attenuation poles are given 
by the reciprocal of the zeros as 

 ,
,

1
pole n

zero n

 


 (6.22) 

10.2 Elliptic	Filter	Poles	and	Zeros	

10.2.1 Loss	Function	Poles	and	Zeros	(Odd	N)	
 
The poles and zeros of interest are in the context of (6.7) and involve the extended loss function given by 
 

    2 2 21 pL s F s    (6.23) 

 
which can be rewritten in terms of the transformed frequency variable z (see equ. (6.17) and Figure 88) 
as 

    2 21 pL z F z   (6.24) 

 
Based upon (6.19) and other periodicity requirements, 
 

   1
1,

NK z
F z sn k

K
   
 

 (6.25) 

Factoring (6.24) produces 
 

   1 1
1 11 , 1 ,p p

NK z NK z
L z j sn k j sn k

K K
                     

 (6.26) 

 
and the zero-solutions are dictated by the solutions to 
 

 1
1,

p

NK z j
sn k

K 
   
 

 (6.27) 

Continuing, this becomes37 

 1 1
1, sin

p

NK z NK z j
sn k

K K 
       
   

 (6.28) 

 

                                                      
37  The exact solution is developed in §10.7.7. 
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since k1 is almost always extremely small. For example, if the passband ripple is 0.1 dB and the minimum 
stopband attenuation requirement is 30 dB, k1 = 0.0048. (See §10.7.7.) If the stopband attenuation is 
increased to 50 dB, k1 = 0.000483. It is therefore valid to take K1 =  / 2 in (6.28) thereby leading to 

 1 1
sinh

2 p

N z
j
K





 

    
 

 (6.29) 

 

Using the identity    1 2sinh log 1ex x x    , one solution-zero to (6.24) is given by 
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K
z j

N
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 (6.30) 

 
Since the sn( ) function in (6.27) has a real period of 4K / N, all of the zeros are subsequently given by 
 

 0

4
for 0,1,...n

K
z z n n

N
    (6.31) 

 
The s-plane zeros are finally found by transforming the zn values in (6.31) by using the transformation 
between z and s given by (6.18). In general, however, the zn values in (6.31) are complex. This issue can 
be handled by using the addition formula38 for elliptic sines as given without proof by 
 

              
   

1 2 2 1 2 1
1 2 2 2 2

1 2

, , , , , ,
,

1 , ,

sn z k cn z k dn z k cn z k sn z k dn z k
sn z z k

k sn z k sn z k


 


 (6.32) 

 
Making use of (6.32) and (6.87) for a complex value z a jb   produces39 

 

              
     2 2 2 2

, , , , , ,
,

, , ,

sn a k dn b k j sn b k cn a k cn b k dn a k
sn a jb k

cn b k k sn a k sn b k

  
 

 
 (6.33) 

 
This result makes it simple to translate all of the zeros given by (6.31) to the s-plane based upon (6.18) 
with j s   resulting in40 

 

 0

4
for 1, 2,..., 1n n

K
j j k sn z n n N

N
        

 
 (6.34) 

 
For N an odd integer, this may be rewritten as41 
 

 

 

0

0 0

2 1
 for 1, 2,...,

2n n

K N
j j k sn z n n

N

j k sn z

 



     
 



 (6.35) 

 
The (double) poles are located at 

                                                      
38  See equ. (A.22) in [8]. 
39  Same as equ. (5.27) in [10]. 
40  Complex poles always appear along with their complex conjugate, hence the  sign. 
41  Result in chapter 5 of [8] includes an additional factor of (–1)n but this appears to be in error. 
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2

     with      ,n n
n

j K
s k sn n k

N
        

 (6.36) 

and 

     2 2

2 2
11

1 1
  with 

1 2

r r
n

n n

N
F r

k

 


  
 

   (6.37) 

 

The poles and zeros can be directly scaled to a ripple bandwidth of p rad/sec by replacing k  with p in 
(6.34) and (6.36). See §16 for a number of detailed design examples.  

10.2.2 Loss	Function	Poles	and	Zeros	(Even	N)	
 
For even-order filters, the zeros of L( ) are given by 
 

 0

2 1
,   for 1, 2,...,

2n n

n N
j j k sn z K k n

N
            

 (6.38) 

 
Similarly, the poles of L( ) are given by 
 

 
2 1

      with      ,  for 1,2,...,
2n n

n

j n N
s k sn K k n

N

            
 (6.39) 

 
The corresponding expression for F( ) is 

     2 2

2 2
11

1
  with 

1 2

r r
n

n n

N
F r

k




 
 

   (6.40) 

10.2.3 Characteristic	Function	Poles	&	Zeros	(Odd	N)	
 

The characteristic function is given by    pK s F s
 
from (6.7).  The significance of knowing K ( s ) is 

that it plays an integral part in computing the input impedance of the filter versus frequency as given by 
(2.24) and (2.27). This function plays a vital role in traditional filter synthesis, but to a lesser extent in the 
Amstutz synthesis method which is used in §10.8. Based upon the Feldtkeller equation (2.15), the poles 

of K( s ) must be the same as the poles of  T s  which were just computed in §10.2 since 

   2 2T s L s  . The zeros of  K s  are given by 

 

 
2

   with   ,  for 1, 2,...n n n

Kn
s j k sn k n r

N
       
 

 (6.41) 

 
where r is the number of elliptic sections involved, namely floor [ (N – 1) / 2]. The Amstutz elliptic filter 

synthesis method is addressed in §10.8.  

10.2.4 Characteristic	Function	Poles	&	Zeros	(Even	N)	
 
As just described in §10.2.3, the poles of K( s ) must be the same as those for T( ), namely those given by 
(6.39). The zeros of K( s ) for the even-order case are given by 
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2 1

  with   ,  for 1, 2,...
2n n n

n N
s j k sn K k n

N

            
 (6.42) 

10.2.5 Complete	Elliptic	Integrals	and	the	Jacobi	Elliptic	Functions	
 
Numerical evaluation of the complete elliptic integral as well as the twelve Jacobi elliptic functions are 
discussed further in §10.7. For a more detailed discussion about elliptic functions, Appendix A of [8] is 
highly recommended as is reference [9]. Additional material is developed based upon Amstutz’s work [11] 
in §17. 

10.2.6 N	=	5	Elliptic	Lowpass	Filter	Design	Example42	
 
Assume the following: 
 

5

1
0.5    ,   2

2
0.1 dB

50 dB

pass stop

pass

stop

N

k

A

A

 



   





 

 
 Then these results follow: 
 

 

 

1

0

0.15262041895

794.32760526133

0.000192138

0.55348751887

 Zeros:

   -0.30341367575  j0.51005682043

   -0.09822601916  j0.75912684028

   -0.41785310753

 Poles:

   j2.29866617127

   j1.477320369

p

s

k

z j

L

L















 35

 

Figure 62 5th-order elliptic lowpass filter example 

                                                      
42  Computed in u18602_equation_check1.m. 
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10.3 Physically	Realizable	Even‐Order	Elliptic	Filters	
 
Elliptic lowpass filters are characterized by four different types commonly referred to as a, b, c,  and s. 
Type–s elliptic filters are odd-order filters which can be physically implemented in a ladder network 
without requiring ideal transformers or negative LC values. Type-s filters exhibit a symmetric topology, 
with an Nth-order lowpass having ( N – 1 ) / 2 trap sections. In the context of the filter’s ABCD matrix 
description ( See §1.2 ), symmetry requires that 
 

 load sourceAR DR  (6.43) 

  
Elliptic filter types a, b, and c are referred to as antimetric filters and are even-order filters. A filter 

is antimetric provided that 
 

 source loadB R R C  (6.44) 

 
The type-a filter must include ideal transformers or at least one negative element in order to be physically 
realizable [1]. The type-b filter eliminates the need for negative circuit elements by moving the highest 
finite-frequency stopband attenuation pole to infinity. This frequency transformation reduces the transition 
rate from the passband to the stopband somewhat, but makes the filter physically realizable. The type-c 
filter additionally transforms the lowest passband attenuation zero to the origin so that the termination 
impedances can be made equal. 

10.3.1 Even‐Order	Type‐B	Filters	
 
Design of the type-b filter begins by following the details provided earlier in §10.2.2 and §10.2.4. These 

formula produce the poles and zeros for a lowpass filter having a passband frequency of p k  and 

implied stopband frequency of 1/s k  . The design is transformed to a type-b filter attenuation 

characteristic with a passband frequency of 1p   by making use of the frequency transformation 

function  

 

 2

11

o a
b

a

s
s

k s




 
 (6.45) 

 
where sa and sb represent complex frequency variables for the original filter design and the type-b filter 
design respectively, 1 is the lowest-frequency zero given by (6.39), and  
 

 2
11o k     (6.46) 

 
A detailed design example for a N = 10 filter type-b filter follows. 
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Example43: N = 10, 0.20p  ,  sin 60ok  , 80.8 dBstopA   

1 = 0.198007183 
o = 0.982876328 

 

Loss Poles Type-A p = k  rad/sec  
  j 5.05032182896 
  j 1.85942796588 
  j 1.31607401295 
  j 1.13993579946 
  j 1.08092053456                              

Loss Zeros Type-A p = k rad/sec 
  –0.28865998524 + j 0.21542621550 
  –0.20765911214 + j 0.57214146700 
  –0.11699931195 + j 0.78822155729 
  –0.05433928213 + j 0.89514103296 
  –0.01540932827 + j 0.93713410053 

 
Loss Poles Type-B p = 1 rad/sec 

j 2.112246661 
j 1.439741558 
j 1.235858726 
j 1.168717739 

 

Loss Zeros Type-B p = 1 rad/sec 
–0.305204244 + j 0.226618383 
–0.223410566 + j 0.606614441 
–0.128188023 + j 0.842111589 
–0.060202020 + j 0.960452517 
–0.017153023 + j 1.007250333 

 
 

 
Figure 63 N = 10,  = 20%, k = sin(60o) type-b 
filter44 

 
Figure 64 N = 10,  = 20%, k = sin(60o) type-b filter. 
Passband close-up. 

 
 
 
 
 
 
 
 
  

                                                      
43  These trap frequencies match those given in [18] exactly (to within the 7-digit published precision). 
44  Computed using u18602_equation_check1.m. 
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10.3.2 Even‐Order	Type‐C	Filters	
 
Design of a type-c filter begins by following the details provided earlier in §10.2.2 and §10.2.4. These 

formula produce the poles and zeros for a lowpass filter having a passband frequency of p k  and 

implied stopband frequency of 1/s k  . The design is transformed to a type-c filter attenuation 

characteristic with a passband frequency of 1p   by making use of the frequency transformation 

function  

 
 

2 2
1

2

11
o a

c

a

s
s

k s

 


 
 (6.47) 

 
where o is initially set to unity.  The transformation of the passband zero to DC causes the passband 
frequency p to shift very slightly (e.g., < 1%) away from 1 rad/sec making a polishing step for parameter 
o necessary if an exact numerical match with [18] is desired. This can be done by employing a simple 
Newton-Raphson type solution where o is iteratively adjusted based upon the filter attenuation at 1 
rad/sec. It is convenient to express the loss function as 
 

  
  
  

2
*/2

10 0 *
1

10 log
N

n n

dB
n n n

s z s z
A s A

s p s p

       
     

  (6.48) 

 
where zn and pn represent the transformed zeros and poles from (6.47), and  
 

 

2
/2

0
1

N
n

n n

p
A

z

  (6.49) 

 
The filter attenuation at the passband edge (1 rad/sec) should equal Apass exactly. A detailed design 
example for a 10th-order type-c elliptic filter follows. 
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Example (from §10.3.1) Continued45: N = 10, 0.20p  ,  sin 60ok  , 80.8 dBstopA   

o = 1.005910031 
 
Loss Poles Type-C p = 1 rad/sec 

j 2.149455379 
j 1.456709508 
j 1.245593971 
j 1.175866923 

Loss Zeros Type-C p = 1 rad/sec 
–0.360305306 + j 0.200755509 
–0.241284178 + j 0.587408240 
–0.135230486 + j 0.834823971 
–0.063074909 + j 0.958700060 
–0.017932772 + j 1.007588230 

 

 
Figure 65 N = 10,  = 20%, k = sin(60o) type-c 
filter46 

 
Figure 66 N = 10,  = 20%, k = sin(60o) type-c filter. 
Passband closeup. 

10.4 Elliptic	Filter	Group	Delay	
 
The group delay for an all-pole filter was developed earlier in (3.9). Assuming that the voltage transfer 
function poles are represented by n + j n and the zeros are represented by um + j vm, the filter group 
delay can be calculated as 
 

  
   2 22 2

1 1

poles zeros
N N

m m
g

m mm m m m

u

v

 
     

   
     

         
   (6.50) 

 
Only odd-order elliptic filter results are shown here for brevity, and for the more common passband ripple 
values of 0.01 dB, 0.1 dB, and 0.25 dB. The transfer function gain-nulls are due to ideal poles located at  
j  which contribute nothing to the group delay since the real-parts of these poles are identically zero. 

Amstutz [11] develops a result for /indZ d  which is directly related to the filter group delay (6.137). 

 Two different perspectives are offered in the plots which follow. The passband and stopband 
attenuation parameters are kept fixed in Figure 67 through Figure 69 and only the filter shape factor ( k = 
fpass / fstop ) allowed to vary. In all cases, the ripple bandwidth is held fixed at 1 rad/sec. In Figure 70 
through Figure 81, the group delay is plotted for different passband and stopband attenuation levels 
versus filter order. 
 
                                                      
45  These trap frequencies match those given in [18] exactly (to within the 7-digit published precision). 
46  Computed using u18602_equation_check1.m. 
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Figure 67 Elliptic filter group delay for fixed passband and stopband attenuation (k1 is constant) allowing 
the filter shape factor ( k = fpass / fstop ) to vary with filter order47. Apass = 0.01 dB. 

 
Figure 68 Elliptic filter group delay for fixed passband and stopband attenuation (k1 is constant) allowing 
the filter shape factor ( k = fpass / fstop ) to vary with filter order48. Apass = 0.1 dB. 

                                                      
47  Computed using u18426_elliptic_group_delay.m. 
48  Computed using u18426_elliptic_group_delay.m. 
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Figure 69 Elliptic filter group delay for fixed passband and stopband attenuation (k1 is constant) allowing 
the filter shape factor ( k = fpass / fstop ) to vary with filter order49. Apass = 0.25 dB. 

 
Figure 70 N = 3 elliptic loss characteristics50 with different stopband attenuation levels. Associated group 
delay characteristics are shown in Figure 71. 

                                                      
49  Computed using u18426_elliptic_group_delay.m. 
50  Computed using u18426_elliptic_group_delay.m. 
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Figure 71 Group delay characteristics for N = 3 elliptic lowpass filter loss characteristics shown in Figure 
70 

 
Figure 72 N = 3 elliptic loss characteristics51 with different stopband attenuation levels. Associated group 
delay characteristics are shown in Figure 73. 

                                                      
51  Computed using u18426_elliptic_group_delay.m. 
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Figure 73 Group delay characteristics for N = 3 elliptic lowpass filter loss characteristics shown in Figure 
72 

 
Figure 74 N = 3 elliptic loss characteristics52 with different stopband attenuation levels. Associated group 
delay characteristics are shown in Figure 75. 

                                                      
52  Computed using u18426_elliptic_group_delay.m. 
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Figure 75 Group delay characteristics for N = 3 elliptic lowpass filter loss characteristics shown in Figure 
74 

 
Figure 76 N = 5 elliptic loss characteristics53 with different stopband attenuation levels. Associated group 
delay characteristics are shown in Figure 77. 

                                                      
53  Computed using u18426_elliptic_group_delay.m. 
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Figure 77 Group delay characteristics for N = 5 elliptic lowpass filter loss characteristics shown in Figure 
76 

 
Figure 78 N = 5 elliptic loss characteristics54 with different stopband attenuation levels. Associated group 
delay characteristics are shown in Figure 79. 

                                                      
54  Computed using u18426_elliptic_group_delay.m. 
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Figure 79 Group delay characteristics for N = 5 elliptic lowpass filter loss characteristics shown in Figure 
78 

 
Figure 80 N = 5 elliptic loss characteristics55 with different stopband attenuation levels. Associated group 
delay characteristics are shown in Figure 81. 

                                                      
55  Computed using u18426_elliptic_group_delay.m. 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16

18

20

rad/sec

D
e

la
y,

 s
ec

Elliptic Filter Group Delay

 

 

Loss = 20 dB

Loss = 40 dB
Loss = 60 dB

Loss = 80 dB

Passband ripple = 0.1 dB

10
-1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

rad/sec

L
o

ss
, d

B

Elliptic Filter Loss

 

 

Loss = 20 dB

Loss = 40 dB
Loss = 60 dB

Loss = 80 dB

Passband ripple = 0.25 dB



U18213 LPF Designer Documentation.docx  70 of 136 

©James A Crawford 2012-15 U18213 Version 1.30 

 
Figure 81 Group delay characteristics for N = 5 elliptic lowpass filter loss characteristics shown in Figure 
80 

10.5 Elliptic	Filter	Transient	Responses	
 
Since elliptic filters are normally selected for their excellent stopband attenuation characteristics, transient 
response performance is generally of secondary importance. Elliptic filters also contain resonant LC 
sections which are prone to substantial ringing. The residue method can be used to calculate the impulse 
response of elliptic filters as done earlier for the Butterworth and Chebyshev filter cases. In general, the 
oscillatory ringing becomes more severe as the shape factor becomes more abrupt ( i.e., k  1 ). Two 
example results are shown below in Figure 82 and Figure 83 for illustrative purposes. 

 
Figure 82 Impulse response for N = 5 lowpass filter, Apass = 0.1778 dB, Astop = 40 dB, k = 0.73412  
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Figure 83 Impulse response for N = 5 lowpass filter, Apass = 0.1778 dB, Astop = 60 dB, k = 0.51445 

10.6 Elliptic	Filter		Design	Parameters	
 
Owing to the appearance of elliptic integrals on both sides of (6.16), one involved with the value of F and 
the other with , it should not be surprising to see symmetry in the filter order equation here which is 
stated without proof as56 

 1

1

K K
N

K K





 (6.51) 

 
where K and K are given by (6.56) and (6.76) using k, and K1 and K1 are calculated using the same two 
equations but with k1 as the modulus rather than k. 
 If on the other hand, the filter order and passband ripple are known, and tradeoffs between 
stopband attenuation and filter shape factor are needed, a more convenient result for the minimum 
stopband loss is given by57  
 

  0.1

1010 log 10 1 exp 12.04 dBpassA

stopband

K
A N

K


        
 (6.52) 

 

where N is the filter order, K and K are the complete elliptic integrals given by (6.56) and (6.76), and Apass 
is the passband ripple in dB. For an example, assume that N = 5, k = 0.80, and Apass = 0.1 dB. This 
results in K = 1.9953,  K = 1.7508, and a minimum stopband attenuation of 31.49 dB. Equation (6.52) is 
shown for several of the most commonly used passband ripple cases in Figure 84 through Figure 86. 

                                                      
56  See [8], [10], or [11] for details. 
57  [8] equation (5.43). 
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Figure 84 Minimum elliptic filter stopband attenuation versus shape factor for Apass = 0.1 dB 

 
Figure 85 Minimum elliptic filter stopband attenuation versus shape factor58 for Apass = 0.25 dB 

                                                      
58  Calculated using u18311_elliptic_pz.m. 
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Figure 86 Minimum elliptic filter stopband attenuation versus shape factor for Apass = 1.0 dB 

10.6.1 Shortened	Elliptic	Order	Equation	
 
A much less computationally intensive means to compute the minimum required elliptic filter order 
(without computing complete elliptic functions) is given in chapter 5 of [8] and is provided here without 
further proof. Given the elliptic modulus value k from (6.2), compute the following: 
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5 9 13
0 0 0 0
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1 1
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   

 (6.53) 

 
Given the allowable passband ripple Apass in dB and minimum desired stopband attenuation Astop again in 
dB, the remainder of the calculations follow as 
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 (6.54) 

 
Additional details are also provided in §10.7.9. 
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10.6.2 Filter	Shape	Factor	from	Apass,	Astop,	and	N	
 
In some cases, the allowable passband ripple Apass, required stopband attenuation Astop, and filter order N 
are known and it remains to calculate the stopband frequency. Orfanidis provides a concise result for this 

case in [13] as provided here without further proof. Given k1 from (6.6), first compute 2
1 11k k   , it’s 

associated complete elliptic integral K, and then 
 

    /2
4

1 1 1
1

2 1
,

NN

m

m
k k sn K k

N

  



      
 

  (6.55) 

 

The exact result for k ( = fpass / fstop ) follows as  2
1k k  . 

10.7 Computing	Elliptic	Quantities	
 
Efficient computation of the complete elliptic integral of the first kind is addressed first in §10.7.1, followed 
by computation of the complimentary complete elliptic integral in §10.7.2. The important s-plane to z-
plane mapping function is discussed next in §10.7.3. The 12 Jacobi elliptic functions are introduced in 
§10.7.4. Landen’s transformation is used to compute the elliptic sne( ) and cde( ) functions in §10.7.5 and 
their inverses in §10.7.6. The exact solution to (6.27) is discussed in §10.7.7. The elliptic functions can 
also be computed using theta functions as discussed in §10.7.9. 

10.7.1 Complete	Elliptic	Integral	of	the	First	Kind	
 
The complete elliptic integral of the first kind is given by 
 

  
 

/2

2 2
0 1 sin

d
K k

k

 





  (6.56) 

 
The complete elliptic integral obviously shows up in the context of elliptic filters, but also appears in 
several other engineering contexts including: 
 

 Characteristic impedance relationship for stripline microwave transmission lines59 
 Exact time-period of a swinging pendulum60 
 
Direct numerical integration of (6.56) is painful for values of k  1. Fortunately for us, an ingenious 

method due to Landen can be used to compute the integral quickly and precisely. This method makes 
use of arithmetic-geometric means which make the integral solution very easy to compute. 
 The elliptic integral of the first kind may also be written in Gauss’s formulation with a > b as 
 

                                                      
59  §5.05 of Microwave Filters, Impedance-Matching Networks, and Coupling Structures, G.L. Matthaei, L. Young, and 
E.M.T. Jones, Artech House, 1980. 
60  Crawford, J.A., “Pendulums and Elliptic Integrals,” 2004.  
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 



    

 
 



 

 
 (6.57) 

where  

 
2 2

2
2

a b
k

a


  (6.58) 

 
The arithmetic-geometric mean relationship can be developed by returning to the first integral in (6.57) 
and substituting  
 

 

 

   
2

2

tan

sec
cos

x b

b d
dx b d


 




 
 (6.59) 

leading to 

 
      

/2

2 2 2 2 2 2 2 2
0 0cos sin

d dx

a b x a x b

 
 




  

   (6.60) 

 
Making a second substitution into (6.60) of 
 

 2x t t ab    (6.61) 
 

 
2

2 2 2

t dt t ab t x dt
dx dt dt

t ab t ab t ab

  
        

 (6.62) 

 
results in   
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2

2 2 2 2 2
2

2
2

2
2

2

2
2

a b t ab
x a x b x t

x x

a b
x t

          
   

    
 

 (6.63) 

 
because 2t / x + ab / x2  1. With (6.63) as the denominator and (6.62) as the numerator of the integrand, 
the x-terms cancel out leaving 
 

 

 
2 2

202 2 2 22
2 2

dt dt

a b a bt ab t t ab t
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
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Therefore, as long as the geometric mean and arithmetic mean of a and b remain constant, the value of 
the integral is unchanged! In Gauss’s formulation of Landen’s transformation, the integral 
 

 
   

/2

2 2 2 2
0 cos sin

d
I

a b

 
 




  (6.65) 

 
 
remains unchanged if a and b are replaced by their arithmetic and geometric means respectively as 

 1 1;       
2

a b
a b ab


   (6.66) 

 
 
 The evaluation of K(k) begins then with (6.58) which can be re-written as 
 

 

2
2 1

b
k

a
   
 

 (6.67) 

 
It is convenient to let a0 = 1 ( due to the 1 / a factor in (6.57) ) leading to b0 = ( 1 – k2 )1/2. The arithmetic 
and geometric means are then iterated as 
 

 
1

1

2
j j

j

j j j

a b
a

b a b









 (6.68) 

 
until such time as aj – bj is sufficiently small. At this point (iteration L), 
 

  
2 L

K k
a


  (6.69) 

Note that starting out with 
 

 
0

0

1

1

a k

b k

 

 
 (6.70) 

 
gives identical results while avoiding the square-root operation in (6.68). The arithmetic mean of (6.70) is 
clearly 1 whereas the geometric mean is ( 1 – k2 )1/2 thereby agreeing with the starting values identified 
with (6.67). The complete elliptic integral K and complete complimentary elliptic integral K are shown 
plotted in Figure 87. 
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Figure 87 Complete elliptic integral61 K (6.56) and complementary elliptic integral K (6.76) 

10.7.2 Complementary	Complete	Elliptic	Integral	of	the	First	Kind	
 
The previous section only considered real values of K ( k ) whereas imaginary values also occur. 
Consider the imaginary value case where 
 

 
 2 2

0 1 sin

d
j

k

 





  (6.71) 

 
Now applying the transformation 

    sin tanj   (6.72) 

to (6.71), the differentials are 
 

    2cos secd j d      (6.73) 

and carrying this through, 
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j d j d
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 (6.74) 

leading to 
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   (6.75) 

 

where    sin tanj    for the integrand upper-limit. It is therefore helpful to define the complete 

complementary elliptic integral of the first-kind as 

                                                      
61  Computed using u18311_elliptic_pz.m. 
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   

/2

2 2
0 1 sin

d
K

k

 


 


  (6.76) 

where 21k k   . 

10.7.3 s‐Plane	to	z‐Plane	Transformation	using	sn(	z,	k	)	
 
The earlier result (6.21) is really a variable transformation which maps points in the z - plane into points 
within the  - plane. It is this transformation which is responsible for the elliptic filter’s attenuation 
characteristic versus frequency, especially its rapid transition between passband and stopband. 
 The sn( ) function is doubly periodic in that a single point zp as well as other points given by 

4 2pz z mK j nK    (for integer values of m and n) are all mapped onto the same point within the  - 

plane. The z-parameter has different periods in the real and imaginary dimensions given by 4K and 2K, 
and these are the complete elliptic integrals discussed earlier in §10.7.1 and §10.7.2 respectively. 

The transformation between the z - and  - planes is shown graphically in Figure 88. The z – 
plane nodes are specifically labeled with the letters S, C, D, and N, and are directly tied to the names 
given to the 12 different elliptic functions possible [13]. These nodes correspond to the z – plane corner 
points { 0, K, j K, K + j K } as shown. An elliptic function pq( z, k ) is named such that the first letter p can 
be any of the four possible letters { s, c, d, n } and the second letter q can be any of the three remaining 
letters. Each function pq( z, k ) has a simple zero at corner p and a simple pole at corner q in Figure 88. 
In general, the following relationships hold 
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Figure 88 Transformation between z-plane and -plane by way of (6.18) for N = 5. Only the fundamental 
z – plane rectangle is shown.62 
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 

,1
, ,   ,

, ,

pr z k
pq z k pq z k

qp z k qr z k
   (6.77) 

where letter r can be any of the four letters but different than p and q. All twelve elliptic functions are 
summarized in terms of cn( ), dn( ), and sn( ) in Table 10 for convenience. 
 The mathematical symmetry imposed by (6.22) is responsible for delivering the equiripple 
stopband attenuation characteristic of elliptic filters when the passband is equiripple. The passband zeros 
and poles can otherwise be chosen independently of each other (e.g., Butterworth and Chebyshev filters 

                                                      
62  For zeros,  2 1 2z m K j nK     and for poles    2 1 2 1z m K j n K     for arbitrary integers n 

and m. 
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have all of their attenuation poles at ). Since the passband and stopband edges are given by k and 1 / 
k  respectively, the passband to stopband transition speed for elliptic filters is arguably optimal, at least 
in the case of analog filters.  
 Darlington [7] was one of the first to recognize the similarities between all-pole filters with their 
poles located at , and the increasing slope of the filter’s transition region as some of the poles are 
moved from infinity to finite frequencies in the context of elliptic filters. He likened the transformation of 
the pole positions (in the case of an equiripple stopband attenuation characteristic) as equivalent to 
manipulating elliptic sine values and their moduli. In this respect, Darlington was able to unify the theory 
between all-pole filters such as the Butterworth and Chebyshev and the elliptic filter family [7]. 

10.7.4 Jacobi	Elliptic	Functions	
 
The elliptic sine function from (6.18) is rewritten here for convenience as 
 

    sin ,sn z k   (6.78) 

 

and similarly for the elliptic function    cos ,cn z k  . MATLAB provides a single function call which 

returns the three primary elliptic function values as    , , ,sn cn dn ellipj z M  where M = k2, 

   , sinsn z k  ,    , coscn z k  . For the third function, taking the derivative of (6.17), 

 

 
   

 

2 2 2 21 sin 1 ,

     ,

dz
k k sn z k

d
dn z k



   


 (6.79) 

 
This function dn( z, k ) is also known as the difference function [10]. These elliptic functions are plotted for 
several values of k in Figure 89 through Figure 93. (Note that z is not normalized to K in these equations!) 
 Several other identities may prove helpful including the following [13]: 
 

    , cosw cn z k    (6.80) 

    2 2, , 1sn z k cn z k   (6.81) 

      , , ,cd z k sn z K k sn K z k     (6.82) 

      2 1 , 1 ,   for any integer 
i

cd z i K k sn z k i       (6.83) 
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cd z iK k cd z k i    (6.84) 
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1

,
,

cd z jK k
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Figure 89 Elliptic functions63 for k = 0.99999 

 
Figure 90 Elliptic functions64 for k = 0.99 

                                                      
63  Calculated in u18311_elliptic_pz.m. 
64  Calculated in u18311_elliptic_pz.m. 
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Figure 91 Elliptic functions65 for k = 0.90 

 
Figure 92 Elliptic functions66 for k = 0.10 

                                                      
65  Calculated in u18311_elliptic_pz.m. 
66  Calculated in u18311_elliptic_pz.m. 
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Figure 93 Elliptic sn( ) and cn( ) functions67 

 
Table 10 All 12 Elliptic Functions in Terms of sn( ), cn( ), and dn( ) (First letter of the function on the far 
left, second letter of the function across the top.) 

 s c d n 
s  

– 
 
 

,
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sn z k

cn z k
 

 
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sn z k

dn z k
 

 ,sn z k  

c  
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,

cn z k

sn z k
 

 
– 

 
 
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,

cn z k

dn z k
 

 ,cn z k  

d  
 

,

,

dn z k

sn z k
 

 
 

,

,

dn z k

cn z k
 

 
– 

 ,dn z k  

n 

 
1

,sn z k
 

 
1

,cn z k
 

 
1

,dn z k
 

– 

 
 As k  0, the sn( ) and cn( ) functions become increasingly sinusoidal as shown in Figure 92 and 
Figure 93 because in the limit, z =   thereby resulting in 
 

 
   
   

, 0 sin

,0 cos

sn z z

cn z z




 (6.86) 

 
 

                                                      
67  Calculated in u18311_elliptic_pz.m. 
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Figure 94 Elliptic sine functions for an imaginary argument68 

 
Figure 95 Elliptic cosine functions for an imaginary argument69 

 In the case of imaginary z values where z = j u, it can be shown [10] 
                                                      
68  Calculated in u18311_elliptic_pz.m. 
69  Calculated in u18311_elliptic_pz.m. 
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   
 

   

   
 

,
,

,

1
,

,

,
,

,

sn u k
sn ju k j

cn u k

cn ju k
cn u k

dn u k
dn ju k

cn u k














 (6.87) 

 
Of these three, the sn( ) function is of greatest interest in the design of elliptic filters. The elliptic sine 
function is shown in Figure 94 for several different k-moduli as a function of z / j as is the elliptic cosine 
function in Figure 95. 

10.7.5 Elliptic	sne(	)	and	cde(	)	Functions	Using	Landen’s	Transformations70	

The key tool for evaluating the elliptic functions  ,w cd z k  and  ,w sn z k at any complex value z 

is the Landen transformation. This transformation begins with a given elliptic modulus k and generates a 
sequence of decreasing moduli kn via a recursion starting with k0 = k. The recursion is given by 

 

2

1

2
1

for 1, 2,...,
1 1

n
n

n

k
k n M

k




 
  
   

 (6.88) 

 
The moduli kn decrease rapidly to zero which permits easy evaluation of the sn( ) and cd( ) values as 
shown momentarily. Another form of (6.88) is given by 
 

 1

1

1 1

1 1
n

n

n

k
k

k




 


 
 (6.89) 

The inverse recursion of (6.88) is given by 
 

 1

2
for , 1,...,1

1
n

n
n

k
k n M M

k   


 (6.90) 

 
The MATLAB elliptic sine function sne( ) uses normalized input values such that 
 

    , ,sn u K k sne u k   (6.91) 

 

In order to compute  ,w sne u k , first initialize 

 sin
2Mw u
   

 
 (6.92) 

and recursively compute 

 1
1

1 1
for , 1,...,1

1n n n
n n

w k w n M M
k w




 
      

 (6.93) 

 

leaving the final answer as w0. For computing  ,w cde u k , initialize 

                                                      
70  Based upon material in [13]. 
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 cos
2Mw u
   

 
 (6.94) 

 
and perform the same recursion given by (6.93) leaving the answer as w0. Several numerical results are 
provided in Table 11 to assist in confirming computed results. 
 
Table 11 Computed Elliptic Function Values 

k K 

 0.2 ,

(0.2, )

sn K k

sne k

  

 

 

0.4 ,

0.4,

sn K k

sne k

  

 

 

0.6 ,

0.6,

sn K k

sne k

  

0.98 3.0209804455298 0.54113794844234 0.840849536186955 0.95538987217989 
0.90 2.28054913842277 0.429472291338501 0.735680640297899 0.903822534082928 
0.80 1.99530277555208 0.382521258305844 0.682296930663461 0.872518193323011 

10.7.6 Inverse	Elliptic	cde(	)	and	sne(	)	Functions	Using	Landen’s	Transformation	
 
The inverse of cde( ) can be calculated in a very similar fashion as done in §10.7.5. Given a specific value 

 ,w cde u k  for which the inverse is to be computed, first set 0w w . The reverse recursion of (6.93) 

is given by 
 

 
  

1

2 2
1 1

2
for 1,2,...,

1 1 1

n
n

n n n

w
w n M

k k w



 

 
  

 (6.95) 

 

The repeated recursions will end with cos
2Mw u
   

 
from which the final answer follows as 

  12
cos Mu w


  (6.96) 

 
 The only difference involved with computing the inverse sne( ) function is that in the final step 
(6.96) is replaced by 

  12
sin Mu w


  (6.97) 

 
to obtain the final answer. 
 

10.7.7 Exact	Solution	to	Equation	(6.27)	
 
Equation (6.27) is repeated here for convenience as 
 

 1
1,

p

NK z j
sn k

K 
   
 

 (6.98) 

 
The text outlined an earlier close approximate solution as given in (6.30) but it is instructive to follow 
through with the exact solution here. Letting z = j x, (6.98) becomes 
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21
1

1
1

21
1

, 1
,

, 1 p

NK
sn x k

NK jK
sn j x k j

NKK
cn x k

K


            
 

 (6.99) 

 
by using the top identity given in (6.87). Canceling j out on each side and recognizing that 

   2 2, , 1sn x y cn x y  , the right-hand portion of this can be rewritten as 

 

 21
1 2

1
, 1

1 p

NK
sn x k

K 
   
  

 (6.100) 

The solution for x quickly follows as 
 

 1 2
12

1

1
, 1

1 p

K
x sn k

NK 

 
  
  

 (6.101) 

 

where it is assumed that if  ,x xsn uK k w , then  1 ,x xuK sn w k . Some sn( ) inverse function 

implementations, however, return the normalized value u rather than uKx thereby offering some potential 

confusion. Defining  , xasn w k u , 2
11xk k  , and Kx as the associated complete elliptic integral,  

 
2

1

1
,

1
x

x

p

K K
x asn k

NK 

 
 
  

 (6.102) 

 
 
A few numerical examples should serve to eliminate any confusion. 
 Since k1 is given by (6.6), it is usually quite small for all practical design cases. Repeating the 
equation here, 

 

0.1

1 0.1

10 1
1

10 1

pass

stop

A

Ak


 


 (6.103) 

 
even if Apass is as large as 0.5 dB (for the passband ripple), k1 will be less than 0.01 so long as minimum 
stopband attenuation Astop is greater than 31 dB. 
 
Table 12 Example Calculations 

k1 K1 N K kx Ap, 
dB 

 x 
Equ. (6.102) 

Approx  
Equ. (6.30) 

0.5 1.685750 5 2.0 0.866025 0.10 0.1526204 0.440627044455 0.6566661 
0.1 1.574746 5 2.0 0.994987 0.10 0.1526204 0.632566132275 “ 
0.01 1.570836 5 2.0 0.999950 0.10 0.1526204 0.656390017576 “ 

0.001 1.570797 5 2.0 0.9999995 0.10 0.1526204 0.656663291799 “ 
0.001 1.570797 5 2.0 0.9999995 0.25 0.2434209 0.540006574347 0.5400077 
0.001 1.570797 5 2.0 0.9999995 0.50 0.3493114 0.451779250502 0.4517798 
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10.7.8 MATLAB	Script	
 
The MATLAB solution to (6.98) is simply given by 
 

 1,
p

K j
z asne k

N 
 

   
 

 (6.104) 

 
since the asne( ) function handles complex arguments directly.  

10.7.9 Computing	Elliptic	Sine	and	Cosine	Using	Theta‐Functions	
 
Elliptic functions can also be represented in terms of series. Many older references use theta functions to 
calculate several of the elliptic functions. The results are presented here as a matter of continuity and 
without proof71 as 

  
1

0

,
1 2

,
,

2

z
q

K
sn z k

zk q
K





 
 
 
 
 
 

 (6.105) 

  
2

0

,
2

,
,

2

z
q

k K
cn z k

zk q
K





 
   
 
 
 

 (6.106) 

  
3

0

,
2

,
,

2

z
q

K
dn z k k

z
q

K





 
 
 
 
 
 

 (6.107) 

 
The q-parameter is known as the modular constant and is given by 

 exp
K

q
K


   

 
 (6.108) 

 
and the individual theta functions are given as 
 

   2

0
1

, 1 2 1 cos 2
2 2

m m

m

z z
q q m

K K






              
  (6.109) 

 

      11/4
1

0

, 2 1 sin 2 1
2 2

m m m

m

z z
q q q m

K K








              
  (6.110) 

 

    11/4
2

0

, 2 cos 2 1
2 2

m m

m

z z
q q q m

K K








             
  (6.111) 

 

                                                      
71  From Appendix A of [8]. 
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2

0
1

, 1 2 cos 2
2 2

m

m

z z
q q m

K K






             
  (6.112) 

 
Since q < 1, these series converge fairly rapidly and any degree of precision desired can be obtained. 
The formula are directly applicable for complex z values as well. 
 As noted elsewhere72, the rather lengthy calculations represented by (6.108) can be shortened 
substantially by using the recursive approximation 
 

 5 9 13
0 1 1 12 5 10m m m mq q q q q       (6.113) 

 
for m = 1, 2, … until the desired accuracy has been obtained where 
 

 0

1 1

2 1

k
q

k





 (6.114) 

 
It normally suffices to truncate the recursion in (6.113) leading to 
 

 5 9 13
0 0 0 02 15 150q q q q q     (6.115) 

 
The modular constant (6.108) is plotted versus the elliptic modulus value k in Figure 96 and the 
approximation error using (6.113) is shown in Figure 97 illustrating that the convergence is indeed rapid. 
 

 
Figure 96 Exact modular function value73 (6.108) versus elliptic modulus parameter k  

 

                                                      
72 Chapter 5 of [8]. 
73  Computed using u18404_mod_constant.m. 
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Figure 97 Modular constant approximation error versus iteration number using (6.113) 
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10.8 Elliptic	Filter	Synthesis	
 
Modern filter synthesis methods usually rely upon first developing a driving-point impedance function 
based upon the insertion loss techniques described in §1.2 and §1.3. This first step will also be employed 
here, but the next step which is used in the synthesis process follows the method proposed by Amstutz in 
[11]. 

10.8.1 Amstutz	Elliptic	Filter	Synthesis	Method	
 
This method is frequently cited in the literature because it is the only method known which avoids the 
mounting precision issues involved with polynomial manipulation in the customary synthesis methods. 
That said, the precision requirements in calculating dZ / d with this method are rather severe and cannot 
be taken lightly. Two computational methods are discussed shortly. 
 Consider two cascaded elliptic filter sections as shown in Figure 98. This topology is the basis for 
the derivations which follow and it is a simple matter to convert the results to the dual topology later. 
Assume that the radian resonance frequency of inductor M1 and capacitor C1 is given by 1, and similarly 
for the second section comprising of M2 and C2 which are series-resonant at frequency 2. In a 

neighborhood of 1 1p j , the impedance of the series-resonant section is given by 

  
1 1

2
1

1M C

p
Z p M p

p

 
  

 
 (6.116) 

1M

1L

1
1

1
C

B


sourceR

2M

2L

2
2

1
C

B


1   Z 
2   Z 

1 2

 
Figure 98 The Amstutz synthesis method relies upon an ingenious permutation of elliptic filter sections. 
The left-most trap is series resonant at radian frequency 1 and the second section series resonant at 2. 

In general, the impedance on the right-hand side of the first section is not zero, but the input impedance 
Z1 in a sufficiently small neighborhood of p1 is still given very accurately by 
 

  
2
1

1 1 1

p
Z p pL M p

p

 
   

 
 (6.117) 

Differentiating (6.117) produces 

 

1

1
1 12

p p

dZ
L M

dp 

   (6.118) 

Based upon (6.117), 

 
 1 1

1
1

Z p
L

p
  (6.119) 

and from (6.118) 
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1

1
1 1

1

2
p p

dZ
M L

dp 

 
  

  
 (6.120) 

Consequently, 

 1 2
1 1

1
C

M p
   (6.121) 

 
Returning to Figure 98, it can be shown that any two-port having this structure has an equivalent 

two-port network with the same structure but with the resonant circuits associated with the resonant 
frequencies 1 and 2 interchanged as shown in Figure 99. Once the input impedance function for the 
filter is known, the designer can choose whether to place the elliptic section associated with 1 first or 
second, and similarly with the 2 section. The input impedance in terms of L’s and C’s is only easily 
calculated, however, using (6.119) through (6.121) for the first section. Amstutz recognized these facts 
and used them to synthesize elliptic filters using two basic steps. In the first step, each of the elliptic filter 
sections is computed as if it were the first section in the complete filter cascade. In the second step, 
Amstutz brought in each of these sections from the left (or right) and iteratively permuted their position in 
the cascade until it finally appeared on the far right (or left) of the cascade. The entire filter was 
subsequently synthesized by iteratively bringing in one new LC section at a time. 
 

21M

21L

21
21

1
C

B


sourceR

12M

12L

12
12

1
C

B


1   Z 
2   Z 

12

 
Figure 99 Two cascaded elliptic filter sections where the sections have been permutated 

 The Amstutz method begins with computing the LC elliptic filter section values associated with 
each trap-frequency m as if it were the first section in the overall filter cascade. Let these values be 
denoted by Lm,1, Mm,1, and Cm,1. The second subscript denotes the assumed position for the elliptic filter 
section within the cascade where the indexing begins from the left (input) side of the filter.  
 Only one of the sections can in fact be the first section in the cascade of course. Subsequent 
sections are introduced on the left (right) side and then permutated from left to right (right to left) using the 
Amstutz algorithm until they are ultimately placed on the far-right (-left) side of the cascade.  
 Given L1,1, M1,1, and C1,1 for the first section, assume that a second elliptic section is to be 
appended to the filter having starting values L2,1, M2,1, and C2,1. Once the new section has been 
permutated to be the second section in the cascade, its component values are denoted by L2,2, M2,2, and 
C2,2. These component values (with the 22 subscripts) can be calculated from the 11 and 21 subscripted 
values as follows. First let 

 11 21U L L   (6.122) 

 
 

1

11
2 2

2 1

1
U C

V
 



 

 
  

  
 (6.123) 

From these results, then compute 
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 22

22 21 11

11 VV

C C C


   (6.124) 

 22 2
22 2

1
M

C 
  (6.125) 

 

 22L UV  (6.126) 

 
A third elliptic filter section can be brought into the filter section cascade by applying this 

permutation algorithm two times. Working again from the left side of the filter, the 3 and 1 sections are 
first permutated so that the resonant sections left-to-right are 1, 3, 2. Then the algorithm is applied a 
second time to the last two sections thereby resulting in the sequence 1, 2, 3. Additional details can be 
found in [1], [3], and of course [11]. 

10.8.2 Input	Impedance	Function	Zin	(	s	)	and	 /indZ d 	

 
A second crucial step in Amstutz’s solution is his computation of the filter’s input impedance and 

especially /indZ d  at the trap resonant frequencies. Although Zin is well conditioned, it is not 

adequately conditioned for direct numerical differentiation with high-order filters. As discussed briefly in 
§10.8.3, even fairly complicated differentiation techniques fall prey to numerical precision issues and are 
in general, not reliable for higher order cases.  
 The input impedance function for the elliptic lowpass filter can be found from the characteristic 
function and transducer gain function since the reflection coefficient is given by (see (2.12) and (2.26)) 
 

    
 
K s

s
T s

   (6.127) 

 
From (2.23), the transducer gain function is given by 
 

    
 
E s

T s
P s

  (6.128) 

 
and the characteristic gain function is similarly given by 
 

    
 
F s

K s
P s

  (6.129) 

 
The form adopted for T( s ) is the same as that used in (2.23), namely 

  
 

 

 
 0

n
n

m
m

s t
E s

T s t
P s

s p


 






 (6.130) 

and similarly for K( s ) 



U18213 LPF Designer Documentation.docx  93 of 136 

©James A Crawford 2012-15 U18213 Version 1.30 

  
 

 0

n
n

m
m

s s
K s s

s p









 (6.131) 

 
which produces the reflection coefficient given by 
 

  
 

 
0

0

n
n

n
n

s s
s

s
t s t










 (6.132) 

 
The magnitude of the reflection coefficient at every attenuation pole pk is unity and the corresponding 
input impedance can be written as 
 

    
 

1

1
k

in k source
k

p
Z p R

p








 (6.133) 

where 

      exp arg argk k n k n
n n

p j p s j p t        
   (6.134) 

 
with 1    where the +1 value applies for symmetric filters and the –1 for antimetric filters. In the 

symmetric and antimetric elliptic filter case,  arg / 2k np s    which makes it possible to rewrite 

(6.134) as 
 

 

   exp arg
2

exp

k k n
n

n
k

n

p j p t

j

 

 

        
    




 (6.135) 

 
Using this result in (6.133) then produces 
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 
1 exp

1 exp

exp exp
2 2

exp exp
2 2

1
cot for 1

2

1
tan for 1

2

n
k

n
in k source

n
k

n

n n
k k

n n
source

n n
k k

n n

n
source k

n

n
source k

n

j

Z p R

j

j j

R
j j

j R

j R

 

 

  

  

 

 

    
 

   
          
   
       

  
     

      





 

 





 (6.136) 

 
which is identical to Amstutz (3.4). This result is easily calculated for each pk value with excellent 

accuracy. Amstutz derives a similarly important result for /indZ d  as 

 

 
   

 

2 2

22

2
arg

kk

source in
n

nsource in pp

n

n n k n

R dZ d
j t

R Z d d 


  


  



     

 
   

   




 (6.137) 

 

The results provided in (6.136) and (6.137) make it possible to accurately compute Zin and /indZ d  on 

the basis of the pk and tn values alone thereby making it possible to compute all of the initial LC sections 
as described earlier in §10.8.1. 
  

 

10.8.3 Aside:	Computing	 /indZ d 	Using	Numerical	Differentiation	

Calculating the derivative of the input impedance with respect to frequency at  = m is particularly 
sensitive to numerical imprecision. Using a simple finite-difference to approximate the derivative at each 
characteristic function zero is insufficient except for the most benign design cases. The approach 
described here is to first perform a polynomial curve-fit through a set of calculated Zin values at radian 

frequencies wrk =   2 , , , , 2m m m m m            , followed by differentiation of 

this polynomial at radian frequency m which is a specific characteristic function pole of interest. 
Assuming that Zin is closely approximated by a 4th-order polynomial in  near m as 
 

          4 3 2

in mZ a b c d e            (6.138) 

 

NOTE:  inZ   must be replaced by  /source load inR R Z   for the antimetric (even-order) case when 

LC sections are introduced from the output side of the filter rather than the input.  
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the 4th-order polynomial which passes through all of the Zin values precisely has coefficients given by74 
 

 

 
 
 

 
 

21 4 6 4 1

2 4 0 4 2
1

1 16 30 16 1
24

2 16 0 16 2

20 0 24 0 0

in m

in m

in m

in m

in m

Za

Zb

Zc

Zd

Ze

 
 


 
 

     
           
       
           
          

 (6.139) 

 
Differentiating (6.138) with respect to  at n produces the derivative 
 

 in indZ Z

d


 

  (6.140) 

 
implying that only the 4th row of (6.139) need actually be computed. In a completely analogous manner, a 
6th-order polynomial can be used to curve-fit the Zin values and upon differentiating the resultant 
polynomial,  
 

  1 1 3 3 3 3 1
, , ,0, , ,

60 20 4 4 20 60

Tin
x

dZ
Z

d 
      

 (6.141) 

 

where Zx is the impedance row-vector given by calculating Zin at radian frequencies m n  for 

 3, 2,...,3n    . This level of precision in the impedance derivative is required in order to have 

accurate results through roughly 11th-order elliptic filters over most stopband / passband attenuation 
combinations. Even so, this approach is considerably less accurate than Amstutz’s method even though it 
also involves substantially more computation. 
 More details about the Amstutz method are provided in §17. A thorough study of Amstutz’s 
original paper [11] is highly recommended for anyone who wants to master the mathematical design of 
elliptic filters. 

 
 
 
 
 

                                                      
74 [19], equations (2.171), 2(.172). 
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11 Filter	Synthesis	Using	Iterated	Analysis75	
 

Perhaps the most valuable tenet provided in [20] is the use of ABCD matrices to formulate the design 
solution. In the case of a lossless two-port network as shown in Figure 100, the ABCD formulation 
provides 
 

 
1 2

1 2

v vA B

i iC D

    
    
    

 (142) 

 
The associated power-related transfer function of interest is given by76 
 

   2 1

2

2v R
H s

E R
  (143) 

and in terms of decibel power-gain, 

 

2

1 2
10

2

2

1
10 10

2 2

4
10log

4
10log 10log

dB

R v
G

R E

R E

R v

 
  

  
  
   
    

 (144) 

 

In the situation where 2R  , the first term in (144) is discarded and attention is focused on the 

voltage-gain term alone. It is convenient to take E = 1 without any loss of generality. In terms of ABCD 
components, 

 1
1

2 2 2 2

1 RE B
A RC D

v v R R
      (145) 

 
 The calculation method employed herein ultimately makes use of the Newton method and partial 

derivatives with respect to each network element value ne are consequently needed. From (144), 

 

 

 

 

 

 

2 2

2 2

2 2
2 2

2
2

10 1
log

log 10

10 1 1
log log

log 10

10 1 1

log 10

20 1
Re

log 10

dB
e

n e n

e e
e n

e n n

e n

G

e e v v

e v v

v v
e v e v

v
e v

    
        

    
          

     
          

   
      

 (146)  

                                                      
75  Motivated by [20]. 
76  This is the reciprocal of the relationship used in [20] so do not get confused. 
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1R

1v

1i 2i

2R
2v

A B
C D
 
 
  

 
Figure 100 Definition terms for ABCD matrix description77 

 The quantity 1
2v
  is directly available from (145). In order to compute the partial derivatives 

required in (146), we turn our attention now to Figure 101 and Figure 102. For the shunt-admittance 
case in Figure 101, the resultant ABCD network is given by 
 

 
   
   

1 2 1 2 2 1 2 1 2 2

1 2 1 2 2 1 2 1 2 2

A A B YA C AB B YB DA B

C D C A D YA C C B D YB D

                              
 (147) 

from which 

 
1 2 1 2

1 2 1 2

B A B BA B

D A D BC DY

  
       

 (148) 

 
Based upon Figure 100, (143), and (148) 
 

 1
1

2 2 2 2

1 RE B
RC D A

v v R R

 
     

 
 (149) 

which leads to 
 

 1
1 1 2 1 2 1 2 1 2

2 2 2

1RE
R D A D B B A B B

Y v R R

 
      

 (150) 

 
For the series-impedance case shown in Figure 102, the resultant derivative is 

 

 
1 2 1 2

1 2 1 2

AC ADA B

C C C DC DZ

  
       

 (151) 

from which 

 1
1 1 2 1 2 1 2 1 2

2 2 2

1RE
RC C C D AC AD

Z v R R

   
          

 (152) 

 

1R

1v

1i

1 1

1 1

A B
C D
 
 
  

2i

2R
2v

2 2

2 2

A B
C D
 
 
  

 
Figure 101 Cascaded network with shunt admittance Y present 

                                                      
77  From U22332 Figures.vsd. 
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+

_
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Z
2 2

2 2

A B
C D
 
 
  

 
Figure 102 Cascaded network with series impedance Z present 

 In order to get the partial derivatives with respect to the component values ke , the chain-rule 

must be used. In the case where admittance Y is a shunt capacitor Cshunt  
 

 
shunt

Y
j

C





 (153) 

 
If the shunt admittance is a series-LC trap, 
 

 2

1
1

1

trap

trap
trap

trap

j C
Y

sL
sC






 
    
 

 (154) 

which leads to 
 

 
2

1
trap

trap

Y j

C









  
   
 

 (155) 

 If the series impedance is an inductance 
 

 
series

Z
j

L





 (156) 

 
In the case where the series impedance is a series LC-trap (parallel L and C), 
 

 2

1
1

1

trap

trap
trap

trap

j L
Z

sC
sL






 
    
 

 (157) 

which leads to 

 
2

1
trap

trap

Z j

L









  
   
 

 (158) 

 
It is assumed here that the trap resonant frequencies are known a priori as part of the transfer function 
approximation step. Consequently, 
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1

trap

trap trapL C
   (159) 

 
and this relationship can be used to eliminate one of the unknowns during the iterative calculations for 
each trap. 

 Recapping then, the needed partial derivatives are given by (146) where 2v is available from 

(149) as  

 2
1

1
2 2

1
v

R B
RC D A

R R


  

 (160) 

 
and the partial derivatives with respect to Y and Z are given by (150) and (152) respectively. The chain 

rule must then be applied to these in order to translate them into partial derivatives with respect to ne  per 

(153), (155), (156), or (158) as appropriate. 

11.1 Iterative	Calculation	
 

Assume now that a power-gain transfer function goal  goalG f  is known and that a filter circuit topology 

has been chosen which contains the correct number of poles and zeros to realize this transfer function. 
The iterative calculation consists of using a sufficient number of (fixed) frequency points to enable a least-
squares solution to take place using Newton’s Method in an iterative manner. 
  
Table 13 Summary of Lowpass Section Types 

Type Lowpass Section 
Type 

Partial Derivative ABCD 

1 

 

shuntC
 

 

 
shunt

Y
j

C





 (161)  
1 0

1shuntj C
 
 
  

      (162) 

2 seriesL
 

 

 
series

Z
j

L





 (163) 
1
0 1

seriesj L 
 
  

     (164) 

3 

 

trapC

trapL

 
 

2

1
trap

trap

Y j

C









  
   
 

 (165) 

2

1

1 0

1trap

trap

j C




 
 
 
         

     (166) 
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Type Lowpass Section 
Type 

Partial Derivative ABCD 

4 

trapC

trapL

 
 

2

1
trap

trap

Z j

L









  
   
 

 (167) 2

1

1

0 1

trap

trap

j L




 
 

  
    
  

 
 

     (168) 

 
 Let the set of fixed evaluation frequencies be denoted by fk and the difference between the goal 
attenuation values and the ones at iteration-k denoted by 
 

      err k goal k dB kG f G f G f   (169) 

 
The (non-square) matrix of partial derivatives has the form 
 

 
 dB k n

n n

G f U
J

U e

 
    

 (170) 

 
where the matrix rows correspond to the different evaluation frequencies fk and the matrix columns 
correspond to the circuit element values being iterated. The element values after the pth iteration are 
given by 

      1 ,1
,n n p err pp p

e e lms J G 
   (171) 

 
where  is a numerical gain term having a magnitude < 1 and lms designates a least-mean-square 
solution for the matrix and vector involved. 
 
Table 14 Normalized LC Values for 3rd-Order Unloaded Inverse Chebyshev Lowpass 

Stopband, 
dB 

C1 C2 C3 L 

25 0.494 0.42 2.495 1.784 
30 0.732 0.323 3.000 2.322 
35 0.992 0.255 3.631 2.941 
40 1.287 0.204 4.39 3.671 
50 2.028 0.135 6.472 5.561 

 
 
Table 15 Normalized LC Values for 5th-Order Unloaded Inverse Chebyshev Lowpass 

Stopband, 
dB 

C1 C2 C3 C4 C5 L1 L2 

30 0.0021 0.4960 1.3204 0.6302 1.7103 0.6966 1.4351 
40 0.1743 0.3385 1.7652 0.4419 2.1750 1.0205 2.0467 
50 0.3533 0.2458 2.3203 0.3271 2.7592 1.4055 2.7647 
60 0.5453 0.1852 3.0065 0.2495 3.4924 1.8654 3.6255 
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11.2 Appendix:	MATLAB	Script	for	Unloaded	Case	(R2	=	)	
 
The first portion of the script computes the poles and zeros of the inverse Chebyshev lowpass filter of 
interest. There are a number of calculations done pertaining to characteristic functions, etc. 
 
 

%================= u22336_inverse_chebyshev_iterated_synthesis.m ================== 
% 
% 
%   J.A. Crawford 
%   20 March 2014 
% 
%   Earlier synthesis program appended with iteration-based design of 
%   5th order inverse Chebyshev lpf as an unloaded LC network 
%   First attempt at using Orchard's iterative design technique and this 
%   example shows that it works well. 
% 
%   A more general script is required if other load impedance values are  
%   needed, or if the order needs to be changed. 
% 
%   Pretty cool, I must say. Anxious to incorporate this method into  
%   a general synthesis tool in C#. I've had need for being able to 
%   use an arbitrary load resistance on quite a few past occassions. 
% 
%   Don't get good convergence for stopband attenuations less than about 
%   30 dB for some reason. Otherwise, fantastic even up to 110 dB 
%   stopband attenuations. Found that the reason is that C1 must be allowed 
%   to go negative for these lower stopband attenuations. 
% 
fil_order= 5; 
Astop_dB= 80; 
jx= i; 
  
Astop= 10^(0.1*Astop_dB); 
epsilon= sqrt(1/(Astop-1)); 
  
odd_order= (mod(fil_order,2)==1);       % 1 if odd-order, otherwise 0 
  
% 
%   Computes poles and zeros of inverse Chebyshev 
% 
aa= sinh( (1/fil_order)*asinh(1/epsilon) ); 
bb= cosh( (1/fil_order)*asinh(1/epsilon)); 
% 
nden= fil_order; 
nnum= floor(fil_order/2); 
     
kk=1:nden; 
theta= (2*kk-1)*pi/(2*fil_order); 
cheby_poles= -aa*sin(theta) + jx*bb*cos(theta) 
  
kk=1:nnum; 
inv_cheby_poles=1./cheby_poles;                         % All poles in the left-half plane 
inv_cheby_zeros= jx./cos( (2*kk-1)*pi/(2*fil_order) ); 
inv_cheby_zeros(nnum+kk)= conj(inv_cheby_zeros(kk));    % All zeros on jw axis 
  
gam= 1; 
for jk=1:length(inv_cheby_poles) 
    gam= gam * inv_cheby_poles(jk); 
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end 
for jk=1:length(inv_cheby_zeros) 
    gam= gam / inv_cheby_zeros(jk); 
end 
  
% 
%   Sweep filter 
% 
Npts= 512*4; 
fswp= 10.^(-3+5*(1:Npts)/Npts); 
Hfil= zeros(1,Npts); 
tau= zeros(1,Npts); 
for jk=1:Npts 
    Hcas= 1; 
    taux= 0; 
    ss= i*2*pi*fswp(jk); 
    for ii=1:length(inv_cheby_zeros) 
        Hcas= Hcas * (ss - inv_cheby_zeros(ii)); 
    end 
    for ii=1:length(inv_cheby_poles) 
        Hcas= Hcas / (ss - inv_cheby_poles(ii)); 
         
        px= -real(inv_cheby_poles(ii) ); 
        py= imag( inv_cheby_poles(ii) ); 
        taux= taux + px/(px^2 + (abs(ss)-py)^2);  
    end 
    Hfil(jk)= 10*log10( abs(gam*Hcas)^2 ); 
    tau(jk)= taux; 
end 
  
figure(1); 
clf; 
p1= semilogx( fswp, Hfil, 'r' ); 
set( p1, 'LineWidth', 2 ); 
grid on 
h= gca; 
set( h, 'LineWidth', 2 ); 
xlabel( 'Frequency, Hz', 'FontName', 'Arial', 'FontSize', 12 ); 
ylabel( 'Gain, dB', 'FontName', 'Arial', 'FontSize', 12 ); 
title( 'Inverse Chebyshev', 'FontName', 'Arial', 'FontSize', 14 ); 
axis( [0.001, 100, -80, 10] ); 
  
% 
%   Look at filter group delay 
% 
figure(2); 
clf; 
p1= semilogx( fswp, tau, 'r' ); 
set( p1, 'LineWidth', 2 ); 
grid on 
h= gca; 
set( h, 'LineWidth', 2 ); 
xlabel( 'Frequency, Hz', 'FontName', 'Arial', 'FontSize', 12 ); 
ylabel( 'Group Delay', 'FontName', 'Arial', 'FontSize', 12 ); 
title( 'Inverse Chebyshev', 'FontName', 'Arial', 'FontSize', 14 ); 
%axis( [0.01, 100, -80, 0] ); 
% 
%===================================================================== 
% 
% 
% 
%   Form H(s) polynomial 
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% 
% 
% 
H_num= 1; 
for ii=1:length(inv_cheby_zeros) 
    H_num= conv( [1 -inv_cheby_zeros(ii)], H_num ); 
end 
H_den= 1; 
for ii=1:length(inv_cheby_poles) 
    H_den= conv( [1 -inv_cheby_poles(ii)], H_den ); 
end 
  
Hx= gam*polyval( H_num, jx*2*pi*fswp ) ./ polyval( H_den, jx*2*pi*fswp ); 
  
figure(3); 
clf; 
p1= semilogx( fswp, 10*log10( abs(Hx).^2 ), 'r' ); 
set( p1, 'LineWidth', 2 ); 
title( 'Check on H(w) Using Poles & Zeros',  'FontName', 'Arial', 'FontSize', 14 ); 
set( p1, 'LineWidth', 2 ); 
grid on 
h= gca; 
set( h, 'LineWidth', 2 ); 
xlabel( 'Frequency, Hz', 'FontName', 'Arial', 'FontSize', 12 ); 
ylabel( 'Group Delay', 'FontName', 'Arial', 'FontSize', 12 ); 
% 
%========================================================================== 
%========================================================================== 
% 
% 
%   Form Characteristic Function K(s) 
% 
% 
K2= abs(1./Hx).^2 - 1;      % Transducer gain is 1/Hx here 
K2_dB= 10*log10( K2 ); 
  
figure(4); 
clf; 
p1= semilogx( fswp, K2_dB, 'r' ); 
set( p1, 'LineWidth', 2 ); 
grid on 
title( '|K(\omega)|^2',  'FontName', 'Arial', 'FontSize', 14 ); 
% 
%   H(s)=  gam * [H_num] / [H_den] 
% 
%   |H(s)|^2 = gam*gam * [H_num]*[H_num] / ( [H_den]*[H_den] ) 
% 
%   |T(s)|^2 = |1/H(s)|^2 = 1 + |K(s)|^2 
% 
%   |T(s)|^2 = [H_den]*[H_den]/(gam^2 * [H_num]*[H_num] ) 
%            = [p_num]/[p_den] 
% 
p_den= gam*gam*conv(H_num, H_num) 
% 
%   H_num only has even-power polynomial coeffs whereas 
%   H_den has both, so must take care of conjugation (i.e., negation) 
%   of odd-power polynomial coefficients 
% 
H_den2= H_den; 
for ii=length(H_den)-1:-2:1 H_den2(ii)= -H_den2(ii); end  
p_num= conv(H_den, H_den2) 
% 
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%   Check this form for |T(s)|^2 
% 
if( 0 ) 
    T2check= polyval(p_num, jx*2*pi*fswp) ./ polyval(p_den, jx*2*pi*fswp); 
    hold on 
    p1= semilogx( fswp, 10*log10( abs(T2check)), 'ko' ); 
end 
% 
%   Form numerator polynomial for |K(s)|^2 = |T(s)|^2 - 1 
% 
p_wrk= p_num; 
lx= length(p_wrk)-length(p_den)+1; 
jk= length(p_den); 
for ii=length(p_wrk):-1:lx 
    p_wrk(ii)= p_wrk(ii) - p_den(jk); 
    jk= jk - 1; 
end 
p_wrk= real(p_wrk) 
  
figure(5); 
clf; 
K2= polyval( p_wrk, jx*2*pi*fswp ) ./ polyval( p_den, jx*2*pi*fswp ); 
p1= semilogx( fswp, 10*log10( abs(K2) ), 'k' ); 
set( p1, 'LineWidth', 2 ); 
grid on 
title( '|K|^2 From Polynomials','FontName', 'Arial', 'FontSize', 14 ); 
% 
%   Factor K^2 
% 
K2_num_roots= roots( p_wrk ); 
K2_den_roots= roots( p_den ); 
  
figure(6); 
clf; 
plot( real(K2_num_roots), imag(K2_num_roots), 'ro' ); 
title( 'Roots of |K|^2 Numerator' ); 
grid on 
% 
%   Retain only left-plane roots 
% 
K_num= 1; 
mm=1; 
for ii=1:length(K2_num_roots) 
    if( real(K2_num_roots(ii)) <= 0.001 ) 
        K_num= conv( [1 -K2_num_roots(ii)], K_num ); 
        K_num_lhp_roots(mm)= K2_num_roots(ii); 
        mm= mm+1; 
    end 
end 
K_den= H_num 
K_num= K_num 
  
figure(7); 
clf; 
K= (1/gam)*polyval( K_num, jx*2*pi*fswp ) ./ polyval( K_den, jx*2*pi*fswp ); 
p1= semilogx( fswp, 10*log10( abs(K).^2 ), 'b-' ); 
set( p1, 'LineWidth', 2 ); 
grid on 
title( 'Final K(\omega)','FontName', 'Arial', 'FontSize', 14 ); 
h= gca; 
set( h, 'LineWidth', 2 ); 
xlabel( 'Frequency, Hz', 'FontName', 'Arial', 'FontSize', 12 ); 
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ylabel( 'dB', 'FontName', 'Arial', 'FontSize', 12 ); 
axis( [0.0001, max(fswp), -60, 80] ); 
  
disp( 'Characteristic Function Numerator:' ); 
disp( num2str( real(K_num), '%5.4e  ' ) ); 
disp( 'Denominator:' ); 
disp( num2str( real(K_den), '%5.4e  ' ) ); 
  
K_num_lhp_roots 
K2_den_roots 
%==================================================================== 
% 
%   Iteratively design filter 
% 
%   Focus on 5th order filter here 
% 
C1= 0.5; 
C2= 0.25; 
C3= 3.0; 
C4= 0.25; 
C5= 3.0; 
wo1= 1.7013; 
wo2= 1.0515; 
L1= 1/(C2*wo1*wo1); 
L2= 1/(C4*wo2*wo2); 
  
freqs= 0.001*10.^(4*(0:50)/50); 
Nfreqs=length(freqs); 
  
abcd1= @(s) [ 1 0; s*C1 1 ]; 
abcd2= @(s) [ 1 1/(s*C2+1/(s*L1)); 0 1]; 
abcd3= @(s) [ 1 0; s*C3 1 ]; 
abcd4= @(s) [ 1 1/(s*C4+1/(s*L2)); 0 1];  
abcd5= @(s) [ 1 0; s*C5 1 ]; 
  
err= 0; 
figure(100); 
clf; 
PD= zeros(Nfreqs,5);    % Partial derivatives 
clear g1; 
clear g2; 
for iter= 1:40 
    for ff=1:Nfreqs 
        g1(ff)= gam*polyval( H_num, jx*2*pi*freqs(ff) ) ./ polyval( H_den, jx*2*pi*freqs(ff) ); 
        g1(ff)= 10*log10( abs(g1(ff))^2 ); 
         
        ss= jx*2*pi*freqs(ff); 
         
        abcd= abcd1(ss) * abcd2(ss) * abcd3(ss) * ... 
              abcd4(ss) * abcd5(ss); 
        g2(ff)= 1/(abcd(1,1) + abcd(2,1)); 
        g2(ff)= 10*log10( abs(g2(ff))^2 ); 
         
        dg(ff)= g1(ff) - g2(ff); 
        if( abs(dg(ff)) > 10 ) 
            dg(ff)= 10*sign(dg(ff)); 
        end 
         
        % 
        %   Get partial derivatives for this frequency 
        %   and for each element value 
        % 
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        %   Cap C1 
        % 
        ss= jx*2*pi*freqs(ff); 
         
        abcd= abcd1(ss)*abcd2(ss)*abcd3(ss)*abcd4(ss)*abcd5(ss); 
        apc= (-20/log(10)) / ( abcd(1,1) + abcd(2,1) ); 
         
        M1= [ 1 0; 0 1]; 
        M2= abcd2(ss)*abcd3(ss)*abcd4(ss)*abcd5(ss); 
        PD(ff,1)= ( M1(1,2)*M2(1,1) + M2(1,1)*M1(2,2) )*ss*apc; 
         
        % 
        %   First LC trap 
        % 
        M1= abcd1(ss); 
        M2= abcd3(ss)*abcd4(ss)*abcd5(ss); 
        PD(ff,2)= ( M1(1,1)*M2(2,1) + M1(2,1)*M2(2,1) )*ss/( 1 - abs(ss/wo1)^2 )*apc; 
         
        % 
        %   Cap C3 
        % 
        M1= abcd1(ss)*abcd2(ss); 
        M2= abcd4(ss)*abcd5(ss); 
        PD(ff,3)= ( M1(1,2)*M2(1,1) + M2(1,1)*M1(2,2) )*ss*apc;         
         
        % 
        %   Second LC trap 
        % 
        M1= abcd1(ss)*abcd2(ss)*abcd3(ss); 
        M2= abcd5(ss); 
        PD(ff,4)= ( M1(1,1)*M2(2,1) + M1(2,1)*M2(2,1) )*ss/( 1 - abs(ss/wo2)^2 )*apc;        
         
        % 
        %   Cap C5 
        % 
        M1= abcd1(ss)*abcd2(ss)*abcd3(ss)*abcd4(ss); 
        M2= [ 1 0; 0 1 ]; 
        PD(ff,5)= ( M1(1,2)*M2(1,1) + M2(1,1)*M1(2,2) )*ss*apc;   
    end 
    % 
    %   Update element values 
    % 
    de= lscov(real((PD)),dg'); 
     
    gamma= 0.25; 
     
    C1= abs(C1 + gamma*de(1)); 
    L1= abs(L1 + gamma*de(2)); 
    C3= abs(C3 + gamma*de(3)); 
    L2= abs(L2 + gamma*de(4)); 
    C5= abs(C5 + gamma*de(5)); 
     
    C2= abs(1/(wo1^2*L1)); 
    C4= abs(1/(wo2^2*L2)); 
     
    abcd1= @(s) [ 1 0; s*C1 1 ]; 
    abcd2= @(s) [ 1 1/(s*C2+1/(s*L1)); 0 1]; 
    abcd3= @(s) [ 1 0; s*C3 1 ]; 
    abcd4= @(s) [ 1 1/(s*C4+1/(s*L2)); 0 1];  
    abcd5= @(s) [ 1 0; s*C5 1 ];     
  
    semilogx( freqs, g1, 'r' ); 
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    hold on 
    semilogx( freqs, g2, 'k--' ); 
    hold on 
end 
     
figure(200); 
clf; 
for ii=1:Npts 
    ss= jx*2*pi*fswp(ii); 
     
    abcd= abcd1(ss) * abcd2(ss) * abcd3(ss) * ... 
              abcd4(ss) * abcd5(ss); 
    gn(ii)= 10*log10( abs(1/(abcd(1,1) + abcd(2,1)))^2 ); 
     
     
    g1(ii)= gam*polyval( H_num, ss ) ./ polyval( H_den, ss ); 
        g1(ii)= 10*log10( abs(g1(ii))^2 );  
end 
axes( 'FontName', 'Arial', 'FontSize', 12 ); 
p1= semilogx( fswp, gn, 'r' ); 
set( p1, 'LineWidth', 2 ); 
hold on 
p1= semilogx( fswp, g1, 'k--' ); 
set( p1, 'LineWidth', 2 ); 
h= gca; 
set( h, 'LineWidth', 2 ); 
grid on 
xlabel( 'Normalized Frequency, Hz', 'FontName', 'Arial', 'FontSize', 12 ); 
ylabel( 'Gain, dB', 'FontName', 'Arial', 'FontSize', 12 ); 
title( 'Original Versus Modified Filter Gain', 'FontName', 'Arial', 'FontSize', 12 ); 
legend( 'Iterative Design Result', 'Ideal from Poles & Zeros' ); 
  
C1 
C2 
C3 
C4 
C5 
L1 
L2   
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11.3 Appendix:	MATLAB	Script	 for	Unequally	Terminated	Case	 (Arbitrary	
R2)	

 
%================ u22345_inverse_chebyshev_iterated_synthesis.m ================== 
% 
%   Same as u22336_inverse_chebyshev_iterated_synthesis.m except that 
%   arbitrary load impedance can be specified 
% 
%   J.A. Crawford 
%   23 March 2014 
% 
%   Earlier synthesis program appended with iteration-based design of 
%   5th order inverse Chebyshev lpf as an unloaded LC network 
%   First attempt at using Orchard's iterative design technique and this 
%   example shows that it works well. 
% 
%   A more general script is required if other load impedance values are  
%   needed, or if the order needs to be changed. 
% 
%   Pretty cool, I must say. Anxious to incorporate this method into  
%   a general synthesis tool in C#. I've had need for being able to 
%   use an arbitrary load resistance on quite a few past occassions. 
% 
%   Don't get good convergence for stopband attenuations less than about 
%   30 dB for some reason. Otherwise, fantastic even up to 110 dB 
%   stopband attenuations. Found that the reason is that C1 must be allowed 
%   to go negative for these lower stopband attenuations. 
% 
fil_order= 5; 
Astop_dB= 60; 
jx= i; 
  
Astop= 10^(0.1*Astop_dB); 
epsilon= sqrt(1/(Astop-1)); 
  
odd_order= (mod(fil_order,2)==1);       % 1 if odd-order, otherwise 0 
  
% 
%   Computes poles and zeros of inverse Chebyshev 
% 
aa= sinh( (1/fil_order)*asinh(1/epsilon) ); 
bb= cosh( (1/fil_order)*asinh(1/epsilon)); 
% 
nden= fil_order; 
nnum= floor(fil_order/2); 
     
kk=1:nden; 
theta= (2*kk-1)*pi/(2*fil_order); 
cheby_poles= -aa*sin(theta) + jx*bb*cos(theta) 
  
kk=1:nnum; 
inv_cheby_poles=1./cheby_poles;                         % All poles in the left-half plane 
inv_cheby_zeros= jx./cos( (2*kk-1)*pi/(2*fil_order) ); 
inv_cheby_zeros(nnum+kk)= conj(inv_cheby_zeros(kk));    % All zeros on jw axis 
  
gam= 1; 
for jk=1:length(inv_cheby_poles) 
    gam= gam * inv_cheby_poles(jk); 
end 
for jk=1:length(inv_cheby_zeros) 
    gam= gam / inv_cheby_zeros(jk); 
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end 
  
% 
%   Sweep filter 
% 
Npts= 512*4; 
fswp= 10.^(-3+5*(1:Npts)/Npts); 
Hfil= zeros(1,Npts); 
tau= zeros(1,Npts); 
for jk=1:Npts 
    Hcas= 1; 
    taux= 0; 
    ss= i*2*pi*fswp(jk); 
    for ii=1:length(inv_cheby_zeros) 
        Hcas= Hcas * (ss - inv_cheby_zeros(ii)); 
    end 
    for ii=1:length(inv_cheby_poles) 
        Hcas= Hcas / (ss - inv_cheby_poles(ii)); 
         
        px= -real(inv_cheby_poles(ii) ); 
        py= imag( inv_cheby_poles(ii) ); 
        taux= taux + px/(px^2 + (abs(ss)-py)^2);  
    end 
    Hfil(jk)= 10*log10( abs(gam*Hcas)^2 ); 
    tau(jk)= taux; 
end 
  
figure(1); 
clf; 
p1= semilogx( fswp, Hfil, 'r' ); 
set( p1, 'LineWidth', 2 ); 
grid on 
h= gca; 
set( h, 'LineWidth', 2 ); 
xlabel( 'Frequency, Hz', 'FontName', 'Arial', 'FontSize', 12 ); 
ylabel( 'Gain, dB', 'FontName', 'Arial', 'FontSize', 12 ); 
title( 'Inverse Chebyshev', 'FontName', 'Arial', 'FontSize', 14 ); 
axis( [0.001, 100, -80, 10] ); 
  
% 
%   Look at filter group delay 
% 
figure(2); 
clf; 
p1= semilogx( fswp, tau, 'r' ); 
set( p1, 'LineWidth', 2 ); 
grid on 
h= gca; 
set( h, 'LineWidth', 2 ); 
xlabel( 'Frequency, Hz', 'FontName', 'Arial', 'FontSize', 12 ); 
ylabel( 'Group Delay', 'FontName', 'Arial', 'FontSize', 12 ); 
title( 'Inverse Chebyshev', 'FontName', 'Arial', 'FontSize', 14 ); 
%axis( [0.01, 100, -80, 0] ); 
% 
%===================================================================== 
% 
% 
% 
%   Form H(s) polynomial 
% 
% 
% 
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H_num= 1; 
for ii=1:length(inv_cheby_zeros) 
    H_num= conv( [1 -inv_cheby_zeros(ii)], H_num ); 
end 
H_den= 1; 
for ii=1:length(inv_cheby_poles) 
    H_den= conv( [1 -inv_cheby_poles(ii)], H_den ); 
end 
  
Hx= gam*polyval( H_num, jx*2*pi*fswp ) ./ polyval( H_den, jx*2*pi*fswp ); 
  
figure(3); 
clf; 
p1= semilogx( fswp, 10*log10( abs(Hx).^2 ), 'r' ); 
set( p1, 'LineWidth', 2 ); 
title( 'Check on H(w) Using Poles & Zeros',  'FontName', 'Arial', 'FontSize', 14 ); 
set( p1, 'LineWidth', 2 ); 
grid on 
h= gca; 
set( h, 'LineWidth', 2 ); 
xlabel( 'Frequency, Hz', 'FontName', 'Arial', 'FontSize', 12 ); 
ylabel( 'Group Delay', 'FontName', 'Arial', 'FontSize', 12 ); 
% 
%========================================================================== 
%========================================================================== 
% 
% 
%   Form Characteristic Function K(s) 
% 
% 
K2= abs(1./Hx).^2 - 1;      % Transducer gain is 1/Hx here 
K2_dB= 10*log10( K2 ); 
  
figure(4); 
clf; 
p1= semilogx( fswp, K2_dB, 'r' ); 
set( p1, 'LineWidth', 2 ); 
grid on 
title( '|K(\omega)|^2',  'FontName', 'Arial', 'FontSize', 14 ); 
% 
%   H(s)=  gam * [H_num] / [H_den] 
% 
%   |H(s)|^2 = gam*gam * [H_num]*[H_num] / ( [H_den]*[H_den] ) 
% 
%   |T(s)|^2 = |1/H(s)|^2 = 1 + |K(s)|^2 
% 
%   |T(s)|^2 = [H_den]*[H_den]/(gam^2 * [H_num]*[H_num] ) 
%            = [p_num]/[p_den] 
% 
p_den= gam*gam*conv(H_num, H_num) 
% 
%   H_num only has even-power polynomial coeffs whereas 
%   H_den has both, so must take care of conjugation (i.e., negation) 
%   of odd-power polynomial coefficients 
% 
H_den2= H_den; 
for ii=length(H_den)-1:-2:1 H_den2(ii)= -H_den2(ii); end  
p_num= conv(H_den, H_den2) 
% 
%   Check this form for |T(s)|^2 
% 
if( 0 ) 
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    T2check= polyval(p_num, jx*2*pi*fswp) ./ polyval(p_den, jx*2*pi*fswp); 
    hold on 
    p1= semilogx( fswp, 10*log10( abs(T2check)), 'ko' ); 
end 
% 
%   Form numerator polynomial for |K(s)|^2 = |T(s)|^2 - 1 
% 
p_wrk= p_num; 
lx= length(p_wrk)-length(p_den)+1; 
jk= length(p_den); 
for ii=length(p_wrk):-1:lx 
    p_wrk(ii)= p_wrk(ii) - p_den(jk); 
    jk= jk - 1; 
end 
p_wrk= real(p_wrk) 
  
figure(5); 
clf; 
K2= polyval( p_wrk, jx*2*pi*fswp ) ./ polyval( p_den, jx*2*pi*fswp ); 
p1= semilogx( fswp, 10*log10( abs(K2) ), 'k' ); 
set( p1, 'LineWidth', 2 ); 
grid on 
title( '|K|^2 From Polynomials','FontName', 'Arial', 'FontSize', 14 ); 
% 
%   Factor K^2 
% 
K2_num_roots= roots( p_wrk ); 
K2_den_roots= roots( p_den ); 
  
figure(6); 
clf; 
plot( real(K2_num_roots), imag(K2_num_roots), 'ro' ); 
title( 'Roots of |K|^2 Numerator' ); 
grid on 
% 
%   Retain only left-plane roots 
% 
K_num= 1; 
mm=1; 
for ii=1:length(K2_num_roots) 
    if( real(K2_num_roots(ii)) <= 0.001 ) 
        K_num= conv( [1 -K2_num_roots(ii)], K_num ); 
        K_num_lhp_roots(mm)= K2_num_roots(ii); 
        mm= mm+1; 
    end 
end 
K_den= H_num 
K_num= K_num 
  
figure(7); 
clf; 
K= (1/gam)*polyval( K_num, jx*2*pi*fswp ) ./ polyval( K_den, jx*2*pi*fswp ); 
p1= semilogx( fswp, 10*log10( abs(K).^2 ), 'b-' ); 
set( p1, 'LineWidth', 2 ); 
grid on 
title( 'Final K(\omega)','FontName', 'Arial', 'FontSize', 14 ); 
h= gca; 
set( h, 'LineWidth', 2 ); 
xlabel( 'Frequency, Hz', 'FontName', 'Arial', 'FontSize', 12 ); 
ylabel( 'dB', 'FontName', 'Arial', 'FontSize', 12 ); 
axis( [0.0001, max(fswp), -60, 80] ); 
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disp( 'Characteristic Function Numerator:' ); 
disp( num2str( real(K_num), '%5.4e  ' ) ); 
disp( 'Denominator:' ); 
disp( num2str( real(K_den), '%5.4e  ' ) ); 
  
K_num_lhp_roots 
K2_den_roots 
%==================================================================== 
% 
%   Iteratively design filter 
% 
%   Focus on 5th order filter here 
% 
R1= 1;      % Source impedance 
R2= 0.5;      % Load impedance 
  
C1= 0.5; 
C2= 0.25; 
C3= 3.1; 
C4= 0.25; 
C5= 3.2; 
wo1= 1.7013; 
wo2= 1.0515; 
L1= 1/(C2*wo1*wo1); 
L2= 1/(C4*wo2*wo2); 
  
freqs= 0.01*10.^(3*(0:75)/75); 
Nfreqs=length(freqs); 
  
abcd1= @(s) [ 1 0; s*C1 1 ]; 
abcd2= @(s) [ 1 1/(s*C2+1/(s*L1)); 0 1]; 
abcd3= @(s) [ 1 0; s*C3 1 ]; 
abcd4= @(s) [ 1 1/(s*C4+1/(s*L2)); 0 1];  
abcd5= @(s) [ 1 0; s*C5 1 ]; 
  
err= 0; 
figure(100); 
clf; 
PD= zeros(Nfreqs,5);    % Partial derivatives 
clear g1; 
clear g2; 
for iter= 1:60 
    for ff=1:Nfreqs 
        g1(ff)= gam*polyval( H_num, jx*2*pi*freqs(ff) ) ./ polyval( H_den, jx*2*pi*freqs(ff) ) * R2/(R1+R2); 
        g1(ff)= 10*log10( abs(g1(ff))^2 ); 
         
        ss= jx*2*pi*freqs(ff); 
         
        abcd= abcd1(ss) * abcd2(ss) * abcd3(ss) * ... 
              abcd4(ss) * abcd5(ss); 
        g2(ff)= 1 /(abcd(1,1) + abcd(1,2)/R2 + R1*abcd(2,1) +(R1/R2)*abcd(2,2) ); 
        g2(ff)= 10*log10( abs(g2(ff))^2 ); 
         
        dg(ff)= g1(ff) - g2(ff); 
        if( abs(dg(ff)) > 10 ) 
            dg(ff)= 10*sign(dg(ff)); 
        end 
         
        % 
        %   Get partial derivatives for this frequency 
        %   and for each element value 
        % 
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        %   Cap C1 
        % 
        ss= jx*2*pi*freqs(ff); 
         
        abcd= abcd1(ss)*abcd2(ss)*abcd3(ss)*abcd4(ss)*abcd5(ss); 
        apc= (-20/log(10)) / (abcd(1,1) + abcd(1,2)/R2 + R1*abcd(2,1) +(R1/R2)*abcd(2,2) ); 
         
        M1= [ 1 0; 0 1]; 
        M2= abcd2(ss)*abcd3(ss)*abcd4(ss)*abcd5(ss); 
            PD(ff,1)= ( R1*M1(2,2)*M2(1,1) + (R1/R2)*M1(2,2)*M2(1,2) + M1(1,2)*M2(1,1) + (1/R2)*M1(1,2)*M2(1,2) 
)*ss*apc; 
         
        % 
        %   First LC trap 
        % 
        M1= abcd1(ss); 
        M2= abcd3(ss)*abcd4(ss)*abcd5(ss); 
            PD(ff,2)= (R1*M1(2,1)*M2(2,1) + (R1/R2)*M1(2,1)*M2(2,2) + M1(1,1)*M2(2,1) + (1/R2)*M1(1,1)*M2(2,2) 
)*ss/( 1 - abs(ss/wo1)^2 )*apc; 
         
        % 
        %   Cap C3 
        % 
        M1= abcd1(ss)*abcd2(ss); 
        M2= abcd4(ss)*abcd5(ss); 
            PD(ff,3)= ( R1*M1(2,2)*M2(1,1) + (R1/R2)*M1(2,2)*M2(1,2) + M1(1,2)*M2(1,1) + (1/R2)*M1(1,2)*M2(1,2) 
)*ss*apc;             
         
        % 
        %   Second LC trap 
        % 
        M1= abcd1(ss)*abcd2(ss)*abcd3(ss); 
        M2= abcd5(ss); 
           PD(ff,4)= (R1*M1(2,1)*M2(2,1) + (R1/R2)*M1(2,1)*M2(2,2) + M1(1,1)*M2(2,1) + (1/R2)*M1(1,1)*M2(2,2) 
)*ss/( 1 - abs(ss/wo2)^2 )*apc;        
         
        % 
        %   Cap C5 
        % 
        M1= abcd1(ss)*abcd2(ss)*abcd3(ss)*abcd4(ss); 
        M2= [ 1 0; 0 1 ];   
            PD(ff,5)= ( R1*M1(2,2)*M2(1,1) + (R1/R2)*M1(2,2)*M2(1,2) + M1(1,2)*M2(1,1) + (1/R2)*M1(1,2)*M2(1,2) 
)*ss*apc;          
    end 
    % 
    %   Update element values 
    % 
    de= lscov(real((PD)),dg'); 
     
    gamma= 0.25; 
     
    C1= (C1 + gamma*de(1)); 
    L1= (L1 + gamma*de(2)); 
    C3= (C3 + gamma*de(3)); 
    L2= (L2 + gamma*de(4)); 
    C5= (C5 + gamma*de(5)); 
     
    C2= abs(1/(wo1^2*L1)); 
    C4= abs(1/(wo2^2*L2)); 
     
    abcd1= @(s) [ 1 0; s*C1 1 ]; 
    abcd2= @(s) [ 1 1/(s*C2+1/(s*L1)); 0 1]; 
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    abcd3= @(s) [ 1 0; s*C3 1 ]; 
    abcd4= @(s) [ 1 1/(s*C4+1/(s*L2)); 0 1];  
    abcd5= @(s) [ 1 0; s*C5 1 ];     
  
    semilogx( freqs, g1, 'r' ); 
    hold on 
    semilogx( freqs, g2, 'k--' ); 
    hold on 
end 
     
figure(200); 
clf; 
for ii=1:Npts 
    ss= jx*2*pi*fswp(ii); 
     
    abcd= abcd1(ss) * abcd2(ss) * abcd3(ss) * ... 
              abcd4(ss) * abcd5(ss); 
    gn(ii)= 10*log10( abs(1/(abcd(1,1) + abcd(1,2)/R2 + R1*abcd(2,1) +(R1/R2)*abcd(2,2) ))^2 ); 
     
     
    g1(ii)= gam*polyval( H_num, ss ) ./ polyval( H_den, ss ) *(R2/(R1+R2)); 
        g1(ii)= 10*log10( abs(g1(ii))^2 );  
end 
axes( 'FontName', 'Arial', 'FontSize', 12 ); 
p1= semilogx( fswp, gn, 'r' ); 
set( p1, 'LineWidth', 2 ); 
hold on 
p1= semilogx( fswp, g1, 'k--' ); 
set( p1, 'LineWidth', 2 ); 
h= gca; 
set( h, 'LineWidth', 2 ); 
grid on 
xlabel( 'Normalized Frequency, Hz', 'FontName', 'Arial', 'FontSize', 12 ); 
ylabel( 'Voltage Gain, dB', 'FontName', 'Arial', 'FontSize', 12 ); 
title( 'Original Versus Modified Filter Gain', 'FontName', 'Arial', 'FontSize', 12 ); 
legend( 'Iterative Design Result', 'Ideal from Poles & Zeros' ); 
  
C1 
C2 
C3 
C4 
C5 
L1 
L2 
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12 Candidate	Network	Circuit	Topologies	
 
poles at infinity, poles at zero, finite poles, zeros, etc. and LC networks 
 
 
 



U18213 LPF Designer Documentation.docx  116 of 136 

©James A Crawford 2012-15 U18213 Version 1.30 

13 References	
 

1. Ellis, Michael G., Electronic Filter Analysis and Synthesis, Chapter 7, Artech House. 
2. Lam, Harry Y-F., Analog and Digital Filters, Design and Realization, Prentice-Hall, 1979. 
3. Cuthbert, Thomas R., Circuit Design Using Personal Computers, John Wiley & Sons, 1983. 
4. Williams, Arthur B., Electronic Filter Design Handbook, McGraw-Hill Book, 1981. 
5. Green, E., “Synthesis of Ladder Networks to Give Butterworth or Chebyshev Response in the 

Passband,” Proc. of the IEE, Part III: Radio and Communication Engineering, March 1954. 
6. Orchard, H.J., “Formulae for Ladder Filters,” Wireless Engineer, Jan. 1953. 
7. Darlington, Sidney, “Simple Algorithms for Elliptic Filters and Generalizations Thereof,” IEEE 

Trans. Circuits and Systems, Dec. 1978. 
8. Antoniou, Andreas, Digital Filters Analysis and Design, McGraw-Hill Book, 1979. 
9. Korn, G.A., and T.M. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed., 

McGraw-Hill Book, 1968. 
10. Daniels, Richard W., Approximation Methods for Electronic Filter Design, McGraw-Hill Book, 

1974. 
11. Amstutz, Pierre, “Elliptic Approximation and Elliptic Filter Design on Small Computers,” IEEE 

Trans. Circuits and Systems, Dec. 1978. 
12. Safar, F.G., F.W. Stephenson, R.W. Steer, “A PC-Based Program for the Interactive Design of 

Cauer Filters,” 30th Symposium on Circuits and Systems, 1988. 
13. Orfanidis, S.J., “Lecture Notes on Elliptic Filter Design,” Nov. 2006, 

www.ece.rutgers.edu/~orfanidi/ece521. 
14. Temes, G.C., and J.W. LaPatra, Circuit Synthesis and Design, McGraw-Hill Book, 1977. 
15. Temes, G.C., and S. K. Mitra, Modern Filter Theory and Design, John Wiley & Sons, 1973. 
16. Christian, E., LC-Filters, Design, Testing, and Manufacturing, John Wiley & Sons, 1983. 
17. Skwirzynski, J.K., “On Synthesis of Filters,” IEEE Trans Circuit Theory, Jan. 1971. 
18. Saal, R., and E. Ulbrich, “On the Design of Filters by Synthesis,” IRE Trans. Circuit Theory, Dec. 

1958. 
19. Crawford, J.A., Advanced Phase-Lock Techniques, Artech House, 2008. 
20. Orchard, H.J., “Filter Design by Iterated Analysis,” IEEE Trans. Circuits and Systems, Nov. 1985. 
21. Hank Zumbahlen, Analog Devices, “Mini Tutorial MT-204, The Bessel Response,” U22163. 
22. I.M. Filanovsky, “Bessel-Butterworth Transitional Filters,” IEEE, 2014, U22370. 

 



U18213 LPF Designer Documentation.docx  117 of 136 

©James A Crawford 2012-15 U18213 Version 1.30 

14 Appendix	I:	Group	Delay	Based	Using	Hilbert	Transforms	
 
The phase response of an all-pole filter (e.g., Butterworth, Chebyshev, Bessel, etc.) can be computed 
from the amplitude response by way of the Hilbert transform. Given a transfer function H(  ) of the form 
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 () and  () form a Hilbert transform pair as 
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Focusing on the first portion of (8.2) and noting that  ( ) is an even function of , this can be re-written as 
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In order to deal with the denominator singularity at   , (8.3) can be broken into a left-hand and right-
hand side integral as 
 

      
2 2 2 2

0

2 2
d d

 

 

       
     

 



  
    (8.4) 

 
where  is chosen appropriately small.  

The group delay calculation involves the first derivative of  with respect to time, and while it is 
tempting to perform this calculation by bringing a differential operator underneath the integrals in (8.4), 
doing so is illegal in this case because the integration and differentiation operations are not 
interchangeable. To see this more clearly, consider the portion of (8.4) which has been left out of the 
integration range in (8.3), namely 
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For  <<  and slowly-changing (), this can be closely approximated by 
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In this form, the singularity is still present, but since the integrand is an odd-function of , as   0, so 
does .  
 Temporarily assuming that the order of differentiation and integration can be interchanged in 
computing the group delay from (8.3), the computation begins as 
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Carrying out the differentiation underneath the integral leads to 
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In this case, the integrand is an even-function of  and there can be no convergence of the integral near 
the singularity. Since a group delay function does in fact exist for any given filter, the non-convergence of 
(8.8) is a restatement that integration and differentiation in (8.7) is not valid in this case. 
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15 Appendix	II:	Additional	Design	Notes	
  

15.1 Butterworth	Filter	Design	Parameters	
 
There are 5 degrees of freedom for Butterworth filter design: (i) filter order N, (ii) filter passband (–3 dB) 
frequency fpass, (iii) maximum passband attenuation Apass, (iv) filter stopband frequency fstop, and (v) filter 
stopband attenuation Astop. The passband frequency Fpass and passband attenuation Apass are assumed to 
be fixed thereby leaving 3 remaining degrees of freedom. Only 2 of the 3 remaining parameters can be 
chosen independently. The fundamental design equation is given by (3.8) which can be written as 
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where Apass = 3 dB is assumed and fpass is assumed known. 

15.1.1 Butterworth	Filter	Shape	Factor	Given	Astop	and	N	
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15.1.2 Butterworth	Stopband	Attenuation	Given	fstop	and	N	
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15.2 Chebyshev	Filter	Design	Parameters	
 
The Chebyshev filter case has the same degrees of freedom except that fpass is the passband ripple 
bandwidth and Apass is the passband ripple. The key design equation is (4.18) which is rewritten here as 
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15.2.1 Chebyshev	Filter	Shape	Factor	Given	Apass,	Astop	and	N	
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15.2.2 Chebyshev	Passband	Ripple	Given	fstop,	Astop,	and	N	
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15.2.3 Chebyshev	Stopband	Attenuation	Given	Apass,		fstop,	and	N	
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16 Appendix	III:	Detailed	Examples	
 

16.1 Odd‐Order	Elliptical	Lowpass	Filters	
 
Odd-ordered elliptical lowpass filters are reasonably simple to design because they are symmetric and 
naturally lead to equal termination impedances. The design examples will consider a 7th-order filter design 
case where the passband ripple bandwidth ( p ) is 10 kHz, and  = 50o corresponding to a stopband 

frequency of  / sin 1.30541s p     kHz. A maximum reflection coefficient magnitude of 20% will 

be assumed which is equivalent to a passband ripple of 0.177288 dB. 
 

16.1.1 N=7	Elliptic	Lowpass	with	Equal	Terminations	
 

 
Figure 103 Design parameters for N=7 elliptic lowpass filter with 20% reflection coefficient 
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Figure 104 Attenuation sweep of equally-terminated elliptic filter example from Figure 103 

Filter Order = 7 
Passband, Hz = 10000 
Ripple, dB = 0.177288 
Stopband, Hz = 13054.1 
Passive filter implementation 
Rsource = 50 
Rload = 50 
 
PR  5.000000E+001 (source resistance) 
SL 9.816883E-004 (series inductor) 
PX  9.688382E-005  4.022705E-007 (shunt series LC section) 
SL 1.377422E-003 (series inductor) 
PX  4.747137E-004  3.031899E-007 (shunt series LC section) 
SL 1.238800E-003 (series inductor) 
PX  3.370385E-004  3.135453E-007 (shunt series LC section) 
SL  7.951374E-004 (series inductor) 
PR 5.000000E+001 (load resistance) 

 

16.2 Even‐Order	Elliptical	Lowpass	Filters	
 
Even-order elliptical lowpass filters are not immediately realizable in a passive LC-form because they 
require at least one negative inductor or capacitor. Comments to this effect were made earlier in §10.3. 
Examples of two different elliptic filter types are given in the following sections. 
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16.3 N=8	Elliptic	Lowpass	Type‐B	
 

 
Figure 105 Design parameters for N=8 elliptic lowpass filter with 20% reflection coefficient, type-b filter 

Passband, Hz = 10000 
Ripple, dB = 0.177288 
Stopband, Hz = 13054.1 
Voltage In / Out transfer function 
Rsource = 50 
Rload = 75.00 
 
PR  5.000000E+001 
SL 9.474761E-004 
PX  1.399023E-004  3.856322E-007 
SL 1.368103E-003 
PX  4.498240E-004  3.141356E-007 
SL 1.270473E-003 
PX  3.199543E-004  3.469115E-007 
SL  1.415828E-003 
PC  2.871549E-007 
PR 7.500003E+001 
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16.4 N=8	Elliptic	Lowpass	Type‐C	
 

 
Figure 106 Design parameters for N=8 elliptic lowpass filter with 20% reflection coefficient, type-c filter 

Passband, Hz = 10000 
Ripple, dB = 0.177288 
Stopband, Hz = 13054.1 
Voltage In / Out transfer function 
Rsource = 50 
Rload = 50 
 
PR  5.000000E+001 
SL 8.428348E-004 
PX  1.210528E-004  4.261658E-007 
SL 1.191686E-003 
PX  3.597828E-004  3.829025E-007 
SL 1.031433E-003 
PX  2.379126E-004  4.517730E-007 
SL  1.040827E-003 
PC  3.818705E-007 
PR 5.000000E+001 
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17 Appendix	IV:	Amstutz	Elliptic	Filter	Design	Programs	
 
Amstutz [11] wrote a now-classic paper about elliptic filter design using small computers in 1978. The 
paper contains a wealth of knowledge for anyone who wants to understand the inner-workings of elliptic 
filter design. Aside from originally being written in Fortran with many go-to statements and limited-length 
variable names, the code contains very few comments and a number of very clever computational tricks 
which make the code very tight and efficient. These same attributes make the code fairly complicated to 
unravel back to more meaningful high-level equations, however. This appendix exposes many of these 
details for the antimetric filter design program case. A copy of Amstutz’s original paper is assumed 
available and many references are made to its content herein. Amstutz uses i to represent the square-

root of –1 in his paper whereas 1j    is used in the discussions which follow. 

 The original Fortran code in [11] lacks good clarity due to the very small font used. The translation 
of this code into Pet Basic done by Cuthbert in [3] is far more legible and is consequently adopted here 
for the discussions which follow. 
 

Figure 107 Antimetric (even-ordered) elliptic filter design program from [3] translated from [11] 
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Figure 108 Symmetric (odd-ordered) elliptic filter design program from [3] translated from [11] 
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17.1 Antimetric	Program	Details	
 
Most of the program steps are carried out assuming a passband frequency edge of p and stopband 
frequency edge s such that 

 
1

s
p




  (9.8) 

 
Once the pertinent results have been computed, they are finally output based upon a passband edge of 1 
rad/sec. 
 The input parameters for the program are (i) passband ripple Ap (dB), (ii) minimum stopband 
attenuation As (dB), (iii) filter-order (N) divided by 2, and (iv) filter type a, b, or c. The filter order must be 
an even integer for the antimetric case. 

17.1.1 Program	Variables	
 

Variable Name Definition / Meaning 

s  Stopband radian frequency, initially such that (9.8) applies 

p  Passband radian frequency edge, initially such that (9.8) applies 

sA  Minimum stopband attenuation, dB 

pA  Maximum passband ripple, dB 

M  Filter order (N) divided by 2. Also equal to the number or resonator-sections in the 
filter 

N  Filter order, must be even, 2N M  

pE   /10
10 1pA

pE    Passband ripple 

sE   /1010 1sA
sE     Pertains to the stopband level 

w z-plane solution in the g( )-plane per (9.13) 
a0 Mapping of the z-plane solution to the s-plane domain per (9.42) 
Er Represent different quantities in the program. Initially, the frequency-domain 

solutions for an N / 2 filter, later transformed to the natural frequencies for an Nth 
order filter, and finally transformed for an Nth-order type a, b, or c elliptic filter. 

u Real part of Amstutz’s elliptic function period, related to the complete elliptic integral 
K through (9.49), and closely estimated by (9.11) 

 
 Program lines 20 through 2020 take care of the input parameters to the program. The first real 
computation takes place in the next two lines where 
 

 1s s

p p

E E
v

E E
    (9.9) 

 
   

2 2

22 log 2 log 4e e

u
v v

 
   (9.10) 

 
Parameter u is one of the more important parameters in that 2u is the real-period of Amstutz’s elliptic sine 
function Sn( ) as discussed shortly. Comparing this to the theory developed earlier in §10.7.3, the real-
period of the Jacobi elliptic sine function sn( ) is 4K where K is the associated complete elliptic integral.  In 
Amstutz (4.32), he defines 
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 
 

2 2

/10

/10

2

10 1exp 2 1 log 16log 16
10 1exp 2 1

log 16

s

p

A

s
e Ae

p

s
e

p

u
a

a

E

E

 



 
                       


 
  
 

 (9.11) 

 
which is consistent with Amstutz (4.30) and (4.31) but not exactly equivalent to (9.10). The difference 
compared to (9.10) is completely negligible for all practical cases, however. The parameter u versus 
stopband attenuation Astop is plotted in Figure 109 assuming a passband ripple of 0.1 dB. Looking ahead 
to the discussion involving (9.43), Amstutz apparently realized that the slight modification in (9.9) 
compared to (9.11) was a simple but effective improvement in the approximation and this improvement is 
included in his program although not mentioned in his paper. 
 

 
Figure 109 Astutz’s u parameter versus stopband attenuation assuming Ap = 0.1 dB 

Following the calculation in (9.10), the program calculates a new value for v in line 2050 as 
 

 

1

1 1

s s

p p

s s s s

E E

E Ev
v

E E E E

 

 
   

 (9.12) 

 
Here again, Amstutz apparently uses this form for v to calculate w in line 2060 of his program78 with 
improved accuracy as 

  2log 1e

v
w v v


    (9.13) 

                                                      
78 because Es >> Ep and the formula in his paper differ. 
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which can be also be rewritten as 

  1sinh
v

w v


  (9.14) 

 
The exact calculation for w is taken up in §17.4. In order to see the underlying details more clearly, some 
time must first be spent with the Amstutz elliptic sine function. 

17.2 Amstutz	Elliptic	Sine	Function	Sn(	)	
 
Amstutz cleverly devised his own elliptic function invention which is admittedly more convenient and 
computationally efficient than using the Jacobi elliptic functions, but this does complicate matters when 
this theory must be compared with the more traditional literature. As noted in §10.7.3, the Jacobi elliptic 
sine function sn( z, k ) has a real-period of 4K and an imaginary period of 2K where K and K are the 
complete elliptic integral and complimentary complete elliptic integral respectively. The elliptic sine 
function used by Amstutz also has a real and imaginary period, but they are somewhat more convenient 
in that the real period is 2u and the imaginary period is j . The Amstutz elliptic sine function is given as79 
 

        
1

, tanh tanh tanh
r

Sn u z z ru z ru z




      (9.15) 

 
The construction of this function is worth looking at more closely. Note that the zeros for this function 
occur for 

 
 
 

tanh 0

tanh 0

ru z

ru z

 

 
 (9.16) 

or in other words, 

  for all integers ,zeroz ru jn r n   (9.17) 

 
The poles occur for 

 
 
 

cosh 0

cosh 0

ru z

ru z

 

 
 (9.18) 

 
Taking the top equation of the two, 
 

      exp exp
cosh 0

2

ru z ru z
ru z

   
    (9.19) 

from which follows 

    1 exp 2 1 exp 2j n ru z              (9.20) 

 
Taking natural logs of both sides and collecting terms reveals the poles given by 
 

 
2 1

2pole

n
z ru j      

 
 (9.21) 

 
for arbitrary integers r and n. The poles and zeros periodicities are consequently as stated earlier.  

                                                      
79  Amstutz equation (4.1). 
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 A second condition on (9.15) for it to be an acceptable elliptic function is for it to have the correct 
value when z = u/2 + j  / 4. This is a special value of z in that  
 

 , 1
2 4

u
Sn u j

    
 

 (9.22) 

 
To see this more clearly, it is best to view (9.15) in terms of magnitude and phase. Note that 
 

 

   

   

   
   

2

2

2 2

2 2

sinh cos cosh sin
4 4

tanh
4 cosh cos sinh sin

4 4

sinh cosh
1

cosh sinh

v j v
v j

v j v

v v

v v

 


 

                      
   


 



 (9.23) 

 
for any real value of v. Consequently, the magnitude of every tanh( ) term in (9.15) is unity for this special 
value of z.  

The angular argument for each tanh( ) term for this special value of z is more complicated. To 
begin with, note that 

    
 

1 exp 2 2
tanh

1 exp 2 2

a jb a jb

a jb a jb

a j be e e e
a jb

e e e e a j b

 

 

  
  

   
 (9.24) 

 
In the special case where b =  / 4, (9.24) becomes 
 

 
 
 

1 exp 2
tanh

4 1 exp 2

j a
a j

j a

        
 (9.25) 

 
and the phase argument for this quantity is given by 
 

  1tanh 2 tan exp 2
4

a j a
         

  (9.26) 

 
This result can be used to compute the phase argument for the product terms in (9.15) as follows. For a 
specific value of r and the special value case of z 
 

 

1

2 4

1

2 4

ru z r u j

ru z r u j





     
 
     
 

 (9.27) 

 
Combining this result with (9.26) and inserting into (9.15) produces 
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      

  

1

11

1

1

tanh tanh 2 tan exp (2 1) ...

2 tan exp (2 1)

rr

r

ru z ru z r u

r u

 









       

 






 (9.28) 

 
At first glance, this results is still fairly complicated, but writing out the first few terms gives 
 

 

     
     

 

1 3 1 5 1 7

1 1 3 1 5

1

tan tan tan ...
2

tan tan tan ...

2 tan

u u u

u u u

u

e e e

e e e

e

     

     

 

      
     

 

 (9.29) 

 
This is precisely the negative of (9.26) when / 2a u thereby proving the zero-phase assertion given by 
(9.22) for this special value for z. Further as given by Amstutz (4.2), Sn( ) mirrors other characteristics of 
the Jacobi elliptic sine function sn( ) as 
 

 

 

 

, ) ( ,

1
,

2 ,

Sn u z u Sn u z

Sn u z j
Sn u z



  

   
 

 (9.30) 

 

, 1
2 4

,
4

u
Sn u j

Sn u j j





    
 
    
 

 (9.31) 

 
 As pointed out here and elaborated in [12], there is a direct relationship between the Jacobi 
elliptic sine function sn( z, k ) and the Amstutz elliptic sine function Sn( u, z ). The filter’s natural 
frequencies which are given by Amstutz (4.19) are given by 
 

 , ,   for 1,...,
2n

n Nu nK
p Sn Nu ksn k n N

N N
        
   

 (9.32) 

17.3 Amstutz	Transducer	Gain	Function	and	Exact	Value	for	u	
 
Throughout the Amstutz paper, the frequency variable  is normalized so that the passband frequency 
edge p and stopband frequency edge s are related as p s = 1. He writes the attenuation 
characteristic as 

    2
2

1
exp 2 1a g 


     (9.33) 

 
which precisely parallels the Feldtkeller equation given earlier by (2.15). In the elliptic filter case, 
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     

 

, sin

, sin

g Sn u z z

z
Sn mu z

m





 

    
 

 (9.34) 

 
where m is the order of the elliptic filter being considered. The first equation is the mapping between the 
g-plane and the z-plane whereas the second corresponds to the mapping between the s-plane and the z-
plane. The maximum passband attenuation ap (nats) corresponds to z = u / 2 thereby leading to 
 

    2
2

1
exp 2 1p pa g 


   (9.35) 

 
Similarly, the minimum stopband attenuation as (nats) occurs for z = u / 2 + j  / 2 such that 
 

    2
2

1
exp 2 1s sa g 


   (9.36) 

From (9.35) and (9.36), 

 

 
 

 
 

2
2

2
2

4

exp 2 1 2
exp 2 1

2 2

2

p p

s s

u
Sna g

ua g Sn j

u
Sn




 
    

   
 

   
 

 (9.37) 

 
where the last equality makes use of (9.30). To facilitate using this result, Amstutz (4.13) defines 
 

 
2

u
Sn    

 
 (9.38) 

 
Based upon (9.34) and the passband edge corresponding to z = u / 2, Amstutz (4.15) gives 
 

 
1

,
2p

s

u
Sn mu m


    
 

 (9.39) 

thereby leading to80 

 2 ,
2

p

s

u
Sn mu m




   
 

 (9.40) 

 
It is worthwhile to point out the symmetries between the square-root of (9.37) which applies to the 
amplitude domain ( g ) and (9.40) which applies to the frequency domain (  ); the only mapping 
difference in the z-domain is the filter order factor m. This scaling factor appears repeatedly between the 
amplitude and frequency domains for elliptic filters.  

In solving for the natural frequencies of the filter, Amstutz (4.27) and (4.28) are identified as 

  ,j Sn u jw   (9.41) 

  0 ,ja Sn mu jw  (9.42) 

                                                      
80 The Amstutz equation (4.25) is missing the square. 
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where (9.42) applies to the functional-mapping of g( ) to the z-domain and (9.41) applies to the mapping 
of the z-plane to the s-plane domain. Amstutz (4.30) uses an approximation (9.10) to compute the filter 
shape-factor u which is quite accurate whereas [12] goes a step further in giving the exact solution as81 
 

 
    11

1

1

1

1
1
1

AGM k
u k

k
AGM

k

  
 
  

 (9.43) 

 
where k1 is given by (6.6) and AGM is the arithmetic-geometric mean first introduced in §10.7.1. It is only 
when this exact result for u is compared to Amstutz’s approximation used in his program (9.10) and the 
approximation cited in his paper (9.11) that a complete vindication of (9.10) is possible as shown in Figure 
110. 

17.4 Calculation	of	w	
 
Given u by way of  (9.10), Amstutz (4.33) computes w is his program using (9.12) and (9.13) whereas his 
paper uses the approximation 

 
 
 

exp 1
log

2 exp 1

p

e

p

au
w

a

 
  

  
 (9.44) 

 
This can also be equivalently written as 
 

   1sinh exp 1p

u
w a


   (9.45) 

                                                      
81  The original equation (16) in [12] includes an additional factor of ½ which is in error when (9.43) is compared to 
Amstutz (4.32). 
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Figure 110 Comparison of u-computation methods82. Exact value is given by (9.43), Amstutz program 
approximation given by (9.10), and Amstutz approximation in the paper given by (9.11). All of the 
methods give acceptably accurate results. 

Reference [12] gives the exact solution for w based upon a repeated application of the Landen 
transformation as follows: 
 

 

     1/4

0 0 1
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1 4

exp 1 exp 1 ,
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 (9.46) 
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 (9.47) 

 
with 

 

 

 

1

2

sinh

log 1e

u
w

u




 




  
 (9.48) 

 

where lim /h h
h
Q SN


 . The exact value for w and Amstutz approximations given by (9.13) and (9.44) 

for w are compared in Figure 111 showing the excellent behavior of the Amstutz approximation used in 
his program versus exact. 

                                                      
82  From u18548_amstutz_equation_checks.m. 
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Figure 111 Comparison83 of estimates for w based upon (i) Amstutz program code formula (9.13) and (ii) 
Amstutz (4.33) repeated here as (9.44). The exact value for w was computed using (9.46) through (9.48).  

 From (9.32), there is a direct correlation between the Amstutz u-parameter and the classical 
elliptic sine period given by 

 
2

u K

N
  (9.49) 

 
where K is the complete elliptic integral associated with modulus k and N is the filter order. Using this 
equivalence in (9.44) leads directly to (6.30) aside from a factor of – j implying that the approximate 
relationship used in Amstutz (4.30) is based upon the same reasoning used earlier in (6.28). 
 The program calculates the filter’s natural frequencies in the z-domain in lines 2090 – 2230. The 
correlation between these lines and the Amstutz equations (4.17) and (4.18) is, however elusive for two 
major reasons. First of all, the Amstutz program makes use of a key statement which appears 
immediately above Amstutz (4.24A) which reads as follows: 
 

It may be interesting to note that a type A characteristic of degree 2m can be deduced in the 
same way from an elliptic characteristic of degree m by the transformation 

 

 2 2

21
m

m

E
f

E








 (9.50) 

 
In other words, the Amstutz program calculates all of the z-plane natural frequencies assuming a N / 2 
degree filter characteristic, and then translates these Er values to new Er values corresponding to a N th 
order filter using (9.50). The second reason these program lines are difficult to follow in the code stems 
from the way in which each tanh( ) product term is computed in (9.15). In line 2050, the Ek calculation 

appears to only include the  tanh ru z  product term while ignoring the  tanh ru z  term in (9.15). 

This apparent discrepancy is adjusted for by (i) computing the Er values for r = 1,2,…,N, and (ii) by 
exploiting the periodicity of the Er solutions which comes from the inherent 2u periodicity of the Sn( ) 
function in lines 2200 – 2230.  

                                                      
83  From u18548_amstutz_equation_checks.m. 
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 Program lines 2250 – 2350 translate the z-plane solution given by (9.13) for the natural 
frequencies into the equivalent s-plane natural frequencies using Amstutz (4.22) and (4.23). These results 
are adjusted further in program lines 3010 – 3030 depending on the filter type ( a, b, or c ).  
 Up until this point in the program, all of the natural frequencies have been calculated for a m = N / 
2 order filter. Program lines 3010 – 3080 use one of three frequency-transformation formulas (Amstutz 
(4.24A) through (4.24C)) to simultaneously compute N natural frequencies from the m and adjust these 
frequencies for a type-a, type-b, or type-c filter. At this point in the program, all of the s-plane natural 
frequencies have been computed for the Nth order filter. The filter passband and stopband frequency 
edges are computed in lines 3020 – 3050.  
 The remaining program computations are still relatively complicated to unravel owing to the 
extreme tightness of the coding style used. Take for instance, Amstutz (3.4) which gives the input 
impedance at attenuation pole pr as 
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where the tn are the transmission zeros from Amstutz (2.6). In program lines 4050 – 4080, this is 
implemented quite differently by computing a recursive sum of angle arctangents based upon the 
trigonometric identity 
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where  1 1tan   and  2 2tan  . Although this unquestionably leads to better numerical precision 

and faster computation, it also makes the coding details considerably more difficult to follow with respect 
to the description given in the paper.  
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