

Copyright © 2017 AM1 LLC 1 of 18

Compressed-Air Spud Cannon and Performance Assessment
Wrap-Up

James A Crawford

Synopsis

Labor Day 2017 found me shooting potatoes into my chronograph rather than
cooling my heels at the beach. Design and performance details for the
completion of this project follow.

Potato Cannon Measurement Results

Copyright © 2017 AM1 LLC 2 of 18

1 Introduction	

Part I of this paper1 provided some background and theory to my efforts with potato
cannons. This part II provides all of the final construction details along with measured
potato cannon performance.

2 Electronic	Design	

An overview with rationale for the electronic design was provided in Part I of this project.
The final schematics are provided in §7. Although the details differ from the concept
described in Figure 10 of Part I, the general concepts remain unchanged. A 10 MHz clock
is used rather than 1 MHz, for instance, and more discrete analog circuitry was used in
large part because I already had most of the parts available.
 The final hardware schematics are provided in §7. The Arduino Uno software is
provided in §6. Every I/O, both analog as well as digital, of the Uno is used in this design.
This is in large part due to the fairly large number of I/O required by the SN74V8154
counter. I could have stepped up to using the Arduino Mega I have on hand, but did not
want to tear into the assembly it is already integrated into.
 A picture of the fully assembled main chronograph circuit board is shown in
Figure 1. The laser detector diode is mounted on the back-side of the circuit boards. Two
such boards are used in the chronograph, but the second board is only populated with
power supply related circuitry, laser (transmit) diode bias circuitry, and the laser detector
circuitry– no digital parts are populated on the second board.

Figure 1 Fully assembled main circuit board with Arduino Uno used for control below. The SN74V8154
entails 12 different I/O signals which took up a major portion of the I/O pins available on the Arduino Uno.

1 U24146 Potato Cannon and Chronograph, V1.0.

Potato Cannon

Copyright © 2017 3 of 18

3 Mechanical	Details	

My chronometer necessarily involves some optics and the need to secure them. I opted
to use materials already on hand. Use of the Fresnel lenses as described in Part I made
it possible to largely avoid any precision focusing issues.
 The optical assemblies are made of ABS drainage pipe parts, secured on a small
wooden bed. The master and slave units are shown together in Figure 2. The only
electrical connections from the 2nd Time Gate assembly back to the main chronograph
circuit board are ground and the detection signal.

Figure 2 Chronograph with master and slave time-gates. A shot potato enters through
the right-side time-gate as shown, triggering the first time-gate and proceeds through the
second time-gate.

Each of the four Fresnel lenses are attached to the inner-ends of the ABS piping
using duct-tape as shown in Figure 3. Since the light-emitting transmit diodes both emit a
diverging cross pattern, a slit has been purposely created with the duct tape in order to
effectively mask out the horizontal laser light pattern thereby only leaving the vertical
pattern. Once the pipe section has been connected into the larger ABS receptacle, each
lens is very secure. Note that all of the Fresnel lenses are recessed back away from the
main potato fly-path thereby helping to minimize the amount of potato juice that ends up
on the surface of the lens.

uLCD-43PT Display

Arduino Uno

2nd Time Gate 1st Time Gate

Potato
Flight

Gnd & Detect2

Potato Cannon

Copyright © 2017 4 of 18

Figure 3 Attachment of plastic Fresnel lens to the inside-end of one of the ABS pipe
sections. Clean-up is made far easier if the smooth-side of the Fresnel lens is facing
outward rather than inward toward the potato flight-path.

Figure 4 Top-view of the master

Transmit Laser Diode

Transmit Diode Bias

Velcro
Strap

Potato Cannon

Copyright © 2017 5 of 18

4 The	Results	

4.1 Indoor	Preliminary	Testing	

A reasonable amount of testing was done indoors using the non-potato projectiles shown
in Figure 5. The indoor measurements turned out to be nicely reliable and consistent.
Outdoor testing turned out to be a bit more challenging, however.

Figure 5 Make-shift projectiles for initial testing. The PVC pipe section was later used to
shape the potato projectiles. The projectile on the far right consists of a small rectangular
piece of wood wrapped first with aluminum foil and then at the bottom with duct tape.

4.2 Testing	Outdoors	

I set up a shooting range across my front yard as shown in Figure 6. In the firing
direction, the nearest neighbor is over a couple of small hills and roughly 2500+ yards
away. I used a short section of 2” PVC pipe (same diameter as used for the barrel of the
potato cannon) to cut down each potato for proper diameter as shown in Figure 7 and
Figure 8. Each cannon shot entailed the details described in Figure 9.

Potato Cannon

Copyright © 2017 6 of 18

Figure 6 Outdoor shooting range set up with good visibility. Projectile ranges can reach
out to 1,000 yards so firearms safety should be the rule of the day.

Figure 7 Cutting down potatoes is a messy job

Figure 8 Ready to fly spuds

Potato Cannon

Copyright © 2017 7 of 18

Figure 9 About to shoot. Each shot entailed (i) first measuring the weight of the potato,
(ii) muzzle-loading one of the cut-down potato projectiles and ramming it down the barrel,
(iii) filling the cannon’s compressed air chamber from my air compressor, (iv) setting the
electronic’s arming control, and finally (v) carefully aiming the cannon through the
chronograph assembly and firing. This location is different than the starting location
shown in Figure 6 because of problems with too much ambient light.

5 Data	Results	&	Conclusions	

All of the data results presented here were taken using 100 PSI or 120 PSI cannon
pressure. I had originally planned to take measurements at several pressure values, but
several difficulties led to somewhat abbreviated data-gathering sessions.
 Scatter diagrams of muzzle velocity and muzzle momentum are shown in Figure
10 and Figure 11 respectively.

Potato Cannon

Copyright © 2017 8 of 18

Figure 10 Measured potato muzzle velocity2 versus potato weight. Round red markers
are from the first data collection effort whereas the square blue markers are from the
second.

Figure 11 Potato muzzle momentum versus potato weight. Round red markers are from
the first data collection effort whereas the square blue markers are from the second.

2 From u24755_spud_data_analysis.m.

3 3.5 4 4.5 5 5.5 6
200

250

300

350

400

450

500

550

600

Potato Weight, oz.

M
u

zz
le

 S
p

ee
d,

 fp
s

Potato Muzzle Velocity

3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

Potato Weight, oz.

M
u

zz
le

 M
o

m
en

tu
m

, f
t-

lb
/s

e
c

Potato Muzzle Momentum

Potato Cannon

Copyright © 2017 9 of 18

5.1 Observations	
 There appear to be two major performance groupings, one group averaging about

225 fps, and the second group averaging in the 500 fps range.
o Based upon the theory discussed in Part I, it seems rather dubious that

potato velocities are reaching 500 fps.
o A much more likely scenario is that the instrumentation is still getting fooled

by potato junk being thrown out of the barrel at very high velocity versus
capturing the potato in flight. Since the second time-gate is not enabled until
after the first time-gate has been triggered, if the first time-gate is properly
triggered by the potato, the potato “junk” has already whizzed past the 2nd
time-gate and proper triggering probably also occurs at the 2nd time-gate as
well. Otherwise, there could likely be 4 or more data-groupings in the
observed data.

 Maximum muzzle velocity observed was an impressive 600 fps, but this is now
believed to be the potato junk being shot out of the barrel rather than a potato.

 Rather difficult to correlate between potato attributes and resultant muzzle velocity
o Too much variability from potato to potato
o Just because a potato is cut one way or another does not automatically

mean that it gets situated in the barrel the same way each time.

5.2 Lessons	Learned	
 Although indoor testing was very consistent, outdoor testing was more difficult.

o Indoor testing did not use any potatoes
o Bright ambient sunlight turned out to be a major difficulty outdoors, but was not

immediately recognized. 2nd dataset was taken after sundown.
 Should have gone to the Arduino Mega with more I/O in order to observe all of the

diagnostics available from the chronograph-assist circuit board.
 Ambient light (bright sun light) proved to be difficult to deal with.

o Could probably use some amount of wavelength-based filtering thereby only
dealing with energy near the laser diode’s emission wavelength but that could
have ruled out visible-light lasers

 Need more stability in the optical assemblies
o Outdoor testing put more strain on the mechanical elements, but ample

diagnostics were lacking to make sure that things were operating as needed.
 Even though Fresnel lenses were recessed from the main potato flight path, potato

moisture affected the performance of the lenses. Needed diagnostics to make this
assessment easier.

 Optical detection thresholds should probably have been made programmable.
 More preliminary testing with non-potato objects would have been helpful, transitioning to

real potatoes before going outside. Didn’t want potato gunk all over my garage though.

5.3 Conclusions	
 Probably much more insightful to use repeatable projectiles rather than potatoes, at least if a

real root understanding of the main theory elements is desired.
 Could serve as a very good science project for additional investigation:

o Aerodynamics of the projectile
 Best projectile shape versus air pressure used and barrel length

o Investigation into linear and nonlinear air flow through the air-trigger valve
o Tradeoffs between muzzle/projectile friction for tighter fit, versus energy losses due to

the same friction
 When it is all said and done, high speed camera captures would go a long was in mitigating

questions and ambiguities. I would recommend going that route over enhancing the
chronograph further since potato velocities are rather benign compared to say a bullet.

Potato Cannon

Copyright © 2017 10 of 18

Purposely left blank.

Potato Cannon Measurement Results

Copyright © 2017 AM1 LLC 11 of 18

6 Appendix:	Arduino	Software	

//
// Use 4-D systems front panel plus an Arduino Uno board
// to arm and query Potato Cannon Chronograph
//
//
// James A. Crawford
// 27 August 2017
//
//
//
// AR-PC talk with Rx= D0, Tx= D1
// AR resets the Genie display using D4 (jumper on shield)
// AR-Genie communicate via Rx= D2, Tx= D3 (the SoftwareSerial ports since Uno only
has one UART)
//
// Extremely Important !!
// Running with too high a baud rate to the Genie display actually brings display
updates
// to an absolute crawl !
// Using 9600 baud for the D0,D1 serial AND the same for the D2,D3 serial works quite
well
//
// Discouraged to use String objects; rather use char arrays to store strings
//
#include <genieArduino.h>
#include <SoftwareSerial.h>

Genie genie;
#define RESETLINE 4 // Change this if you are not using an Arduino Adaptor Shield
Version 2 (see code below)

static const int Rx2=2;
static const int Tx2=3;

static long int _count_MSBs;
static long int _count_LSBs;
static bool _trigger1;
static bool _trigger2;

SoftwareSerial DisplaySerial(Rx2, Tx2);

void setup()
{
 pinMode(RESETLINE, OUTPUT);
 digitalWrite(RESETLINE,0);
 delay(300);
 digitalWrite(RESETLINE,1);
 delay(3500); //let the display start up after the reset (This is important)

 pinMode(Rx2,INPUT); // Needed in order to talk to LCD
 pinMode(Tx2,OUTPUT);

Potato Cannon

Copyright © 2017 12 of 18

 delay(100);

 //
 // Set up Arduino's GPIO
 //
 // GPIO's 2, 3, 4 already used
 //
 // Set Up Outputs
 //
 #define resetCounterBar 7
 #define galBar 8
 #define gauBar 9
 #define gblBar 10
 #define gbuBar 11
 //
 pinMode(resetCounterBar, OUTPUT);
 pinMode(galBar, OUTPUT);
 pinMode(gauBar, OUTPUT);
 pinMode(gblBar, OUTPUT);
 pinMode(gbuBar, OUTPUT);

 //
 // Set Up Inputs
 //
 #define detect1 12
 #define detect2 13
 //
 pinMode(detect1, INPUT);
 pinMode(detect2, INPUT);

 #define dataY0 14
 #define dataY1 15
 #define dataY2 16
 #define dataY3 17
 #define dataY4 18
 #define dataY5 19
 #define dataY6 5
 #define dataY7 6
 //
 pinMode(dataY0, INPUT);
 pinMode(dataY1, INPUT);
 pinMode(dataY2, INPUT);
 pinMode(dataY3, INPUT);
 pinMode(dataY4, INPUT);
 pinMode(dataY5, INPUT);
 pinMode(dataY6, INPUT);
 pinMode(dataY7, INPUT);

 DisplaySerial.begin(9600); // Set speed for Display softwareserial port. Apparently, only
9600 and 115200 available

 Serial.begin(115200);
 Serial.flush();
 Serial.println("Serial Port to Arduino Being Initialized\n");
 Serial.println(GENIE_VERSION);

Potato Cannon

Copyright © 2017 13 of 18

 // NOTE, the genieBegin
 //
 delay(100);

 genie.Begin(DisplaySerial); // Use software serial port for talking to the LCD display

 genie.AttachEventHandler(myGenieEventHandler); // Attach the user function Event
Handler for processing events

 // Set the brightness/Contrast of the Display - (Not needed but illustrates how)
 // Most Displays, 1 = Display ON, 0 = Display OFF. See below for exceptions and for
DIABLO16 displays.
 // For uLCD-43, uLCD-220RD, uLCD-70DT, and uLCD-35DT, use 0-15 for Brightness
Control, where 0 = Display OFF, though to 15 = Max Brightness ON.
 //
 // Check contrast control
 //
 genie.WriteContrast(1);
 delay(100);
 genie.WriteContrast(10);

 //
 // Initialize items on Genie display
 //
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0x00, 0); // Count_MSBs
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0x01, 0); // Count_LSBs
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0x02, 0); // flightTime

 genie.WriteObject(GENIE_OBJ_USER_LED, 0x00, 0); // trigger1
 genie.WriteObject(GENIE_OBJ_USER_LED, 0x01, 0); // trigger2
 genie.WriteObject(GENIE_OBJ_USER_LED, 0x02, 0); // detect1
 genie.WriteObject(GENIE_OBJ_USER_LED, 0x03, 0); // detect2

 genie.WriteObject(GENIE_OBJ_4DBUTTON, 0x00, 0); // Reset

 _count_MSBs= 0;
 _count_LSBs= 0;
 _trigger1= false;
 _trigger2= false;

 digitalWrite(resetCounterBar, 0x00);
 delay(20);
 digitalWrite(resetCounterBar, 0x01);
 delay(20);

 //
 // Try some other initializations
 //
 genie.WriteObject(GENIE_OBJ_USER_LED, 0x02, 1);
 delay(2000);
 genie.WriteObject(GENIE_OBJ_USER_LED, 0x02, 0);
 delay(2000);
 genie.WriteObject(GENIE_OBJ_USER_LED, 0x02, 1);
 delay(2000);
 genie.WriteObject(GENIE_OBJ_USER_LED, 0x02, 0);
 delay(2000);

Potato Cannon

Copyright © 2017 14 of 18

 genie.WriteObject(GENIE_OBJ_USER_LED, 0x02, 1);
 //delay(2000);
 //genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0x01, "123456");
 delay(2000);
 genie.WriteObject(GENIE_OBJ_LED_DIGITS, 0x01, 123);

}
//===

void myGenieEventHandler(void)
{
 //--
 //
 // Needed programming guidance came from U24333 Visi-Geni Connecting 4D Display
to Arduino Host.pdf
 //
 //--
 genieFrame Event;
 genie.DequeueEvent(&Event); // Remove the next queued event from the buffer, and
process it below

 //If the cmd received is from a Reported Event (Events triggered from the Events tab of
Workshop4 objects)
 //
 // The only objects on the LCD screen which report back are all trackbars and two toggle
switches.
 // Need to figure out the object type first, and then the details to follow.
 // the commands (reports always correspond to a changed value). Only need the
trackbar index
 // and the data values.
 //
 int objIndex;
 int dvalue;
 int dvalue_pwm;
 int dvalue_lcd;

 const bool Debug= false;

 Serial.print("Command ");
 Serial.println(Event.reportObject.cmd);
 Serial.print("Object ");
 Serial.println(Event.reportObject.object);
 Serial.print("Index ");
 Serial.println(Event.reportObject.index);
 Serial.print("Data MSB = ");
 Serial.println(Event.reportObject.data_msb);
 Serial.print("Data LSB = ");
 Serial.println(Event.reportObject.data_lsb);

 objIndex= Event.reportObject.index;
 dvalue= Event.reportObject.data_lsb + 256*Event.reportObject.data_msb;

 switch(Event.reportObject.object)
 {
 case GENIE_OBJ_4DBUTTON:
 switch(objIndex)

Potato Cannon

Copyright © 2017 15 of 18

 {
 case 30: // Reset button hit. Issue reset strobe
 Serial.println("Reset Chronograph Counter");
 digitalWrite(resetCounterBar, 0x00);
 delay(20);
 digitalWrite(resetCounterBar, 0x01);
 //
 genie.WriteObject(GENIE_OBJ_USER_LED, 0x02, 0); // detect1
 genie.WriteObject(GENIE_OBJ_USER_LED, 0x03, 0); // detect2
 break;
 }
 default:
 break;
 }
}
//===

void loop()
{
 static long waitPeriod = millis();

 static int counterA_lsbs;
 static int counterA_msbs;
 static int counterB_lsbs;
 static int counterB_msbs;

 bool _detect1;
 bool _detect2;

 genie.DoEvents(); // This calls the library each loop to process the queued responses
from the display

 if (millis() >= waitPeriod)
 {
 waitPeriod = millis() + 150; // rerun this code to update the display
 }

 _detect1= digitalRead(detect1);
 _detect2= digitalRead(detect2);

 if(_detect1)
 {
 Serial.println("Detect 1 TRUE");
 genie.WriteObject(GENIE_OBJ_USER_LED, 0x02, 1);
 }
 if(_detect2)
 {
 Serial.println("Detect 2 TRUE");
 genie.WriteObject(GENIE_OBJ_USER_LED, 0x03, 1);
 }

 if(_detect1 && _detect2)
 {
 //
 // Read back the counter value

Potato Cannon

Copyright © 2017 16 of 18

 //
 // Fetch counter A LSBs
 //
 digitalWrite(galBar, false);
 digitalWrite(gauBar, true);
 digitalWrite(gblBar, true);
 digitalWrite(gbuBar, true);
 counterA_lsbs= readCounter();
 Serial.print("counterA_lsbs= ");
 Serial.println(counterA_lsbs);
 //
 }

}
//===

int readCounter(void)
{
 int readValue_digital;
 int readValue_analog;

 int threshold = 64;

 int readByte;

 readByte= 0;

 readByte= digitalRead(dataY7);
 readByte= 2*readByte + digitalRead(dataY6);

 readValue_analog= analogRead(dataY5);
 readByte= 2*readByte + (readValue_analog > threshold)? 1 : 0;

 readValue_analog= analogRead(dataY4);
 readByte= 2*readByte + (readValue_analog > threshold)? 1 : 0;

 readValue_analog= analogRead(dataY3);
 readByte= 2*readByte + (readValue_analog > threshold)? 1 : 0;

 readValue_analog= analogRead(dataY2);
 readByte= 2*readByte + (readValue_analog > threshold)? 1 : 0;

 readValue_analog= analogRead(dataY1);
 readByte= 2*readByte + (readValue_analog > threshold)? 1 : 0;

 readValue_analog= analogRead(dataY0);
 readByte= 2*readByte + (readValue_analog > threshold)? 1 : 0;

 return(readByte);

}
//===

Potato Cannon Schematics

Copyright © 2017 AM1 LLC 17 of 18

7 Appendix:	Schematics	

Figure 12 Schematics page 1

Potato Cannon

Copyright © 2017 18 of 18

Figure 13 Schematics page 2

