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Synopsis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Classical LC filter design is becoming increasingly rare in much of the RF 
design community. This is in part due to the domination of direct-conversion in 
up- and down-converters and the widespread availability of excellent off-the-
shelf filter components (e.g., SAW filters).  
      Whether the occasion be discrete design or on-chip integrated design, the 
need for tunable bandpass filters still arises, however. In Part I of this article, 
single-pole bandpass filter design was considered for situations where 
passband flatness is not overly demanding but insertion loss may be a critical 
requirement. Part II of this article looks at the design of 2nd-order tunable 
bandpass filters which may prove indispensable in some circumstances. 
 For those readers more interested in design results rather than the 
theoretical background development, §6 provides several design examples and 
the MATLAB script used to do the design calculations is provided in §9. 
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1 Introduction	
 

The primary motivations for considering the first-order bandpass filters in Part I of this 
material were simplicity and low insertion loss. Several lessons learned with the 1st-order 
filters are undoubtedly applicable to the 2nd order filter case as well. Second-order filters 
offer the possibility of wider passbands with much better amplitude flatness. 
 Lesson #1 from Part I was that the filter’s internal resistance level can be crafted 
in a fairly flexible manner in order to realize a range of filter bandwidth versus center 
frequency behaviors. Lesson #2 was that the use of purely series resonators can 
exacerbate the insertion loss problem if FET or PIN diode switches are used to switch in 
different capacitance values. This is because the filter’s impedance level in those 
resonators is fairly low compared to the on-resistance of these switching devices. Parallel 
resonators are therefore more advantageous for lower insertion loss since these are 
typically used with an internal filter impedance Rinternal greater than the port impedances 
Rsource and Rload.  
 Pole and zero placement for a filter determine all of the behavior characteristics 
of the filter. It is generally desirable to have an equal number of transmission zeros at dc 
and infinity so that the lower and upper stopband behaviors can be made roughly the 
same. A representative filter to aid in this discussion is shown in Figure 1. In order to 
determine the number of transmission zeros at dc in Figure 1, it is helpful to think of each 
capacitor being replaced by an open-circuit and each inductor being replaced by a short-
circuit as shown in Figure 2. In the portion denoted as Cut 1, in a resistive divider sense, 
an impedance open (from C2) is working against an impedance short (from L1) thereby 
contributing two transmission zeros1. In the portion denoted as Cut 2, an impedance 
open (from C3) is working against a non-zero impedance Rload so this adds only one 
transmission zero. The filter consequently has three transmission zeros at dc. In the case 
of transmission zeros at , each capacitor is replaced by a short-circuit and each inductor 
is replaced by an open-circuit as shown in Figure 3. For Cut 3, a short (from C1) is 
working against a non-zero impedance Rsource thereby contributing one transmission zero. 
For Cut 4, an open-circuit (from L2) is working against a short-circuit (from C4) thereby 
contributing two transmission zeros. The filter consequently exhibits three transmission 
zeros at infinite frequency making for an equal number of transmission zeros in the lower 
and upper stopbands as desired. 
 

1C 2C 1L 2L 3C 4C3L

sourceR

loadR

 
Figure 1 Representative 2nd order bandpass filter 

                                                      
1  Note that parallel open-circuits count as simply one open-circuit, and parallel short-circuits count as a single short-
circuit. The converse is true with series open- and short-circuits.  
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1C 2C 1L 2L 3C 4C3L

sourceR

loadR

 
Figure 2 Bandpass filter shown in Figure 1 with impedance considerations at DC shown 

1C 2C 1L 2L 3C 4C3L

sourceR

loadR

 
Figure 3 Bandpass filter shown in Figure 1 with impedance considerations at  
frequency shown 

 Of the 2nd-order filter topology configurations shown in Table 1, having roughly 
equal numbers of transmission zeros at dc and  helps assure good overall stopband 
performance as just explained. This criterion favors configurations 2 and 4. Both 
topologies use parallel resonators so that is not a discriminating factor. Configuration 2 is 
the more interesting of the two, however, because it permits Rinternal to be larger than the 
port impedances whereas Configuration 4 is just the opposite. The design details behind 
both configurations are developed in this paper. 

1.1 Some	History	
 
One of the most intriguing filter design books I happened upon early in my engineering 
career was the book by Daniels [1]. This book gave me a very early appreciation for filter 
pole/zero placement and was the primary motivation for thinking about the 2nd-order filter 
design problem in the context of Table 1 in the first place.  
 In order to make a filter tunable, inductors and or capacitors must of course be 
tunable. Since tunable inductors are rather intractable for traditional LC filters, the tuning 
elements are usually limited to capacitors. Since inductors also tend to be more lossy and 
larger than capacitors, it is desirable to minimize the number of inductors used; nothing 
new under the sun here.  
 I first investigated this type of tunable 2nd-order bandpass filter in connection with 
an SBIR project [2]. Two circuit sketches from that report making use of this filter type are 
shown in Figure 4 and Figure 5. Both figures make use of inductive-coupling between the 
two resonators based upon the tee-to-pi transformation given in §8. Note that inductive 
impedance transformations were used at the input and output of the filter rather than 
capacitive transformers as used in Configuration 2 of Table 1. 
 The notion of admittance and impedance inverters is also not new [3, 4, 5]. They 
were also used in [2] as the basis for Figure 4 and Figure 5. The inverter concept is 
introduced in §2 as the basis for bandpass filter design. 
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Table 1 Several of the Many Possible 2nd-order Bandpass Filter Alternatives2 

Config 
# 

Input 
Match 

Resonator 
Coupling 

Output 
Match 

Zeros3

@ DC 
Zeros 
@  

Schematic 

1 
Tapped- 

C 
C 

Tapped-
C 

5 1 

1C 2C 1L 2L3C 4C 5C

 

2* 
Tapped- 

C 
L 

Tapped-
C 

3 3 

1C 2C 1L 2L 3C 4C3L

 

3 HPF C HPF 5 1 

1C 2C1L 2L3C 4C 5C

4* HPF L HPF 3 3 

1C 2C1L 2L 3C 4C3L

5 LPF C HPF 4 2 

1C 2C1L 3L 3C 4C2L

6 LPF L HPF 2 4 

1C 2C1L 3L 3C2L 4L

 
 

                                                      
2  Configurations 2 and 4 are preferred. Schematics from U22437 Figures for U22436.vsd. 
3  Transmission zeros at DC and infinity provide an indication about the lower and upper stopband behaviors. 
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Figure 4 2nd-order tunable bandpass filter from [2] using inductive-tee coupling 

 
Figure 5 2nd-order tunable bandpass filter from [2] using inductive-pi coupling 

1.2 Outline	for	the	Paper	
 

The paper is organized into four main sections: 
 

Section I: The core of the filter based upon admittance and impedance inverters 
is developed while postponing discussions about the input/output sections (e.g., 
capacitors C1, C2, C3, and C4 in configuration #2 of Table 1). This material will 
likely be familiar for some readers. 
 
Section II: This portion of the paper is focused upon the input/output sections 
which are used to convert impedance levels between the input/output ports and 
the internal impedance used within the filter core. This section will necessarily 
employ a fair amount of somewhat tedious algebra. 
 
Section III: The third section is devoted to using the preceding results to design 
2nd-order tunable bandpass filter.   
 
Section IV: Several real tunable bandpass filters are designed in this section. 
Fabrication and performance assessment information concludes this section and 
the paper. 

 
A table of contents is provided on the next page for easier navigation. 
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2 Admittance	and	Impedance	Inverter	Concepts	
 

Even though the bandpass filter order is limited to only two in this paper, it is both 
computationally helpful as well as insightful to look at the inverter concepts first put forth 
by Cohn [3, 4, 5, 6, 7, 8] for bandpass filter design. The inverter concepts are particularly 
helpful in microwave engineering where they are usually implemented as quarter-
wavelength segments of transmission line (e.g., microstrip, stripline). As such, filter books 
without a bent toward microwave engineering will frequently not cover the topic. In this 
paper, only lumped-element (i.e., LC) inverters will be used as developed herein. 

If presented with an impedance/admittance ladder network like the one shown in 
Figure 6, the input impedance can be written down by inspection as 

inZ
1z

2y

3z

4y

5z

oR

 
Figure 6 Example ladder network of impedances 

 5

4

3

2
1

1
1

1
1

in

o

Z z
y

z
y

z R

 







 (1) 

 

in which branch impedance values (at a specified frequency) are denoted by the kz

values and branch admittances are denoted by the ky  values. In this continued-fraction 

form, impedance (and admittance) inversion steps are clearly visible. If this ladder 

actually represents a bandpass filter of some kind, it would be natural to think of the kz  

branches as series LC sections and the ky  branches as parallel LC sections. In the more 

general sense, the kz  and ky  branches can also represent individual inductors or 

capacitors as well. 
 Going one step further, now consider the cascade shown in Figure 7 where each 
uj similarly represents a lossless reactance branch posed by either a LC section, a series 
capacitor, or a series inductor. 

inZ
2u

oR

1u3u4u5u

54K 43K 32K 21K

 
Figure 7 Cascade circuit arrangement using impedance inverters (Ki,j) 
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For the moment, also assume that each K-block used in Figure 8 is an ideal impedance 
inverter which is frequency-independent and governed by the equation 
 

 2
i oK Z Z  (2) 

iZ
oZ

 
Figure 8 Ideal impedance inverter 

Using (2) in connection with Figure 7, the input impedance for the entire cascade can be 
written as 
 

 
2
54

5 2
43

4 2
32

3 2
21

2
1

in

o

K
Z u

K
u

K
u

K
u

u R

 







 (3) 

 
The regularity of this equation along with its similarity to (1) should be self-apparent. This 
equation can be reorganized as 

 

5 2
434

22 2
3254 54

3 2
21

2
1

5
4
2 2 2 2
54 54 54 32

3 22 2
2143 43

2
1

5
4
2 2
54 54

32 2 2 2
43 43 43 21

22 2 2 2
54 32 54 32 1

1

1

1
1

1

1
1

1

1

in

o

o

o

Z u
Ku

KK K
u

K
u

u R

u
u
K K K K

u
KK K

u
u R

u
u
K K

u
K K K K

u
K K K K u R

 







 

   

   
    



 

 

              

 (4) 

 
Based upon (4), it can be seen that Figure 7 can be made equivalent to Figure 6 by 
choosing the impedance branches uj and the K values in an appropriate manner. 
 The beauty of the admittance / impedance inverter concept is that it provides a 
very straight forward way to design bandpass filters based upon lowpass filter prototype 
filters. More importantly, it makes it easy to design a wide range of filters with the form 
shown in Figure 9 and Figure 10 which are well suited for circuit implementation at 
microwave frequencies. The K-blocks also make it easy to scale impedance levels within  
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the filter up and down to facilitate other real-world factors like reasonable inductor and 
capacitance values, etc. An expression similar to (2) applies for admittance inverters as 

 

 2
i oJ YY  (5) 

 
These concepts ultimately make it possible to design bandpass filters with uniform 
topologies like that shown in Figure 11. In the balance of this paper, however, only 2nd 
order bandpass filters like those shown in Table 1 will be considered further. 
 The next two sections develop the inverter concepts in terms of lumped-element 
L’s and C’s. These LC-sections will be key elements of the detailed filter design 
discussion which follows later. 

0R 1L 1C

01K

2L 2C

12K

3L 3C

23K
, 1n nK 

1nR 

 
Figure 9 Bandpass filter using impedance inverters 

0G 1L 1C

01J

2L 2C

12J

3L 3C

23J

, 1n nJ 

1nG 

 
Figure 10 Bandpass filter using admittance inverters 

0G 1L 1C 2L 2C 3L 3C

1nG 

aL aC

 
Figure 11 General bandpass filter designs made possible by using inverter concepts 

2.1 Lumped‐Element	Inverters	
 

Approximate lumped-element inverters can be formed in a variety of ways using 
inductors and capacitors. There is one catch, however. All such inverters require negative 
L- or C-values which are not physically realizable using passive elements. This problem 
can usually be sidestepped through later steps in the filter design process though so the 
negative elements should not pose undue concern at this point in the discussion. 
 Two admittance inverters and two impedance inverters will be discussed in this 
section as schematically shown in Table 2. Note that all of the sections entail the use of 
positive and negative circuit elements as already mentioned and that the positive element 
is always in the middle position. This generally makes it possible to absorb the negative-
valued elements with other positive-valued elements within the filter thereby coming up 
with a physically realizable filter. 
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Table 2 Lumped-Element Admittance (a and c) and Impedance (b and d) Inverters 

Schematic Formula ABCD Matrix 
(a) 

1L 1L
1L

2

1

1
in L

o

Y Y J

J
L




 

1

1

0

0

o

o

j L

j

L





 
 
 
  

 

b) 

2L

2L 2L 2

2

in L

o

Z Z K

K L




2

2

0

0

o

o

j L

j

L





 
  
  

 

(c) 

1C 1C1C

2

1

in L

o

Y Y J

J C



 1

1

0

0
o

o

j

C

j C




 
 
 
  

 

(d) 

2C 2C

2C

2

2

1
in L

o

Z Z K

K
C



 2

2

0

0
o

o

j

C

j C




 
 
 
  

 

 
 Consider the admittance inverter (a) in Table 2 when its output is terminated into 
admittance YL. The input admittance Yin is given by 

 

 

1

1
1

1

2 2 2 2
1 1

1 1
1

1 1

in

L

L o L

Y sL
sL Y

sL

s L Y L Y


 
     
  

 


 

 (6) 

 

where o is the radian frequency of interest. This result corresponds to (5) at one specific 

frequency given 
1

1

o

J
L

 . Using the ABCD-matrix formulation from Part I of this paper, 

it is can be shown that the corresponding ABCD matrix for this inverter is given by 
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  1

1 1

1

1

1 0 1 0
1

1 10 1

0

0

a

j L
ABCD j j

L L

j L

j

L




 





   
                

 
   
  

 (7) 

 
Similar results can be obtained for the other inverters as summarized in Table 2. These 
results will be used in the next section of the paper to arrive at design formula for 2nd-
order bandpass filters. 

3 Filter	Core	Design	Using	Admittance	Inverters	
 

The discussion has progressed to the point where the core of the filter can be designed 
using the inverter concepts. What is meant by filter core is the portion of the filter less the 
input and output impedance-scaling networks (e.g., capacitor taps in Figure 1). 

A basic 2nd-order bandpass filter is shown in Figure 12. Assuming that the 
admittance inverter value J12 is constant (evaluated at the center frequency of the filter), 
the input impedance is given by 

 

 

2
2

1 1 2 12

1 22 2
12

1

1
 when 

L
in

L L

L

L L

R Y
Z

Y R YY R J

R Y
Y Y Y

Y R Y R J




 


  
 

 (8) 

SR

1Y 2Y

12J

LR

inZ

 
Figure 12 Basic 2nd-order bandpass filter based upon an admittance inverter 

 

Assuming an equally-terminated filter with S LR R , the associated input reflection 

coefficient is given by 
 

 
 
 

   
   

2 2
12

2 2
12

22

12

22

12

1

1

1

1 2

in S

in S

S S S S

S S S S

S S

S S S

Z R

Z R

R Y R Y R Y R J

R Y R Y R Y R J

R Y R J

R Y R Y R J

 




   


   

 


  

  (9) 
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Based upon (9), the conditions under which 0  (assuming J12 is constant and 

independent of frequency) requires 
 

    2 2

121 0S SR Y R J    (10) 

 
For an ideal bandpass filter, Y will be completely imaginary (i.e., a pure reactance) and 

this point can be amplified by substituting reY jY . Upon substitution into (10), the result 

can be simplified to 

 2
12 2

1
re

L

Y J
R

    (11) 

 

At the filter’s center frequency, it is desirable for 0reY   in order to have minimum 

insertion loss thereby dictating 12

1

c

J
L

  where c is the radian center-frequency of the 

filter. So long as the two admittance branches exhibit parallel resonance at the filter’s 
center frequency and the condition on J12 is met, the filter will exhibit no insertion loss at 
its center frequency. 

3.1 Filter	3	dB	Bandwidth	and	Filter	Core	Design	
 

The –3 dB points of the filter’s frequency response correspond to 2 / 2  . From the 

results just obtained, 12 1LR J  . Returning to (9) for the –3 dB frequency points, 

 

 
 2

2 2

1 12

2 1 2 1
L re

L re L re

R Y

j R Y R Y

 


  
 (12) 

 

leading to 2 /re LY R  at these points. These results can now be used in the context 

of the inductively-coupled N = 2 bandpass filter shown in Figure 13 to finally arrive at 
filter-related design formula. 
 Referring to Figure 13, a simple substitution is made to transform the upper 
portion of the figure into the lower portion, specifically 
 

 r c
eff r c

c r

L L
L L L

L L
 


 (13) 

 
Notice that this re-arrangement now situates a complete admittance inverter between the 
two LC resonators. Referring now to the lower part of Figure 13 at the –3 dB points 
 

 

2 12 1 t eff
re t

S eff eff

C L
Y C

R L L




 


      (14) 

 
which leads to a quadratic equation in   given by 
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sR

tC cLrL rL tC

sR

sR

tC cLeffL effL tC

sR

cL cL
 

Figure 13 Simplified schematic without input and output tapped capacitors4 

 2 2 1
0

S t t effR C C L

    (15) 

 
The solutions to this quadratic equation are given by 
 

 3 2

1 1
1

22
eff

dB
S tS t eff t

L

R CR C L C
      (16) 

 
From this result, the 3 dB bandwidth is 
 

 
1

2 S t

B Hz
R C

  (17) 

 
and the (arithmetic) center frequency of the filter is given by 
 

 
2

1
1

2
eff

c
S teff t

L

R CL C
    (18) 

 
At a given desired center frequency with a 3 dB filter bandwidth given by (17) and pre-
determined core impedance level for the filter (RS), the one remaining degree of freedom 
follows from (18) as 

 

1

2
2

1

2eff c t
S t

L C
R C




 
  
 

 (19) 

with  

 
1

2
t

S

C
R B

  (20) 

                                                      
4  From U22437 Figures for U22436.vsd. 
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 Summarizing, the impedance level RS is first chosen for the filter. (This will likely 
be later re-visited to arrive at convenient L and C values.) As established earlier, 

12 1LR J   and 12

1

c c

J
L

 . Therefore, 

 L
c

c

R
L


  (21) 

 
Based upon the 3 dB filter RF bandwidth B (Hz) chosen for the filter, the required tuning 

capacitance Ct follows directly from (20). The radian center frequency for the filter c is 

assumed to be known. The shunt inductance values Leff directly follow from (19). The final 
shunt inductances Lr in Figure 13 follow from rearranging (13) as 
 

 
eff c

r
c eff

L L
L

L L



 (22) 

 
A Worked Filter Example 
 
A worked example is always helpful in cementing concepts into place. Assume that a N = 
2 bandpass filter centered at 250 MHz is desired having a 3 dB bandwidth of 40 MHz. 
This represents a percentage-bandwidth of 16% which will not unduly press the 
assumptions behind the admittance inverter concept. Further assume that the impedance 
level of the filter RS is chosen to be 200. 
 From (20), the required tuning capacitance is 28.13 pF. The shunt resonator 
inductors Leff follow directly from (19) as 14.5 nH. The coupling inductor is given from (21) 
as 127.3 nH. The value for Lr follows from (22) as 16.36 nH. The corresponding 
schematic is shown in Figure 14. 

16.4nH

127.3nH

16.4nH

200

20028.13 pF
28.13 pF

 
Figure 14 Schematic for example 250 MHz bandpass filter 

 The frequency response of the filter can be computed using the ABCD matrix 
methods presented in Part I of this paper. In terms of the top portion of Figure 13, the 
ABCD matrix for the filter portion (less source and load resistances) is given by 

 

  
1 0 1 0

1 0 1 01
1 1

1 11 10 1
c

t t
r r

sL
ABCD s

sC sC
sL sL

   
                            

 (23) 

 
and the S11 and S21 scattering parameters follow using equations (53) – (55) in Part I of 
this paper. The resultant frequency response is shown in Figure 15 and Figure 16. 
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Figure 15 Computed frequency response for the example filter shown in Figure 14 

 
Figure 16 Close-up of frequency response shown in Figure 15 

 Once the filter is made tunable, it becomes necessary to make the core 
impedance value RS a function of the filter’s center frequency. Without this provision, the 
filter’s passband will otherwise misbehave badly. The purpose of the tapped-
capacitances at the input and output of the filter in Figure 1 can perform this function 
nicely as developed shortly in §5 of this paper. 
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4 Filter	Core	Design	Using	Impedance	Inverters	
 

The inverter discussion would be incomplete if the core filter design topic was not re-
visited based upon using impedance inverters. The derivation in this section bears 
substantial similarity to the previous section using admittance inverters.  
 A 2nd-order bandpass filter using the impedance inverter concept is shown in 
Figure 17. Taking Z1 = Z2 = Z, and assuming that the filter’s output is terminated with RS 
as shown, the input impedance is given by 

sR

sR

12K1Z
2Z

 
Figure 17 Second-order filter using impedance inverter 

 
2 2

12S
in

S

R Z Z K
Z

R Z

 



 (24) 

 
and the associated input reflection coefficient is given by 
 

 
2 2 2

12
2 2 2

12 2
S

in
S S

Z K R

Z K R Z R
  


  

 (25) 

 
Assuming that the series impedance branches are both series-resonant at the filter’s 
center frequency in order to present minimum insertion loss, invoking at zero-valued 

reflection coefficient requires 12 SK R at the resonant frequency thereby leading to 

 

 12 c cK L  (26) 

4.1 Filter	3	dB	Bandwidth	and	Filter	Core	Design	
 

The –3 dB band-edges of the filter correspond to 2 / 2in  . In the context of (25), 

K12 will be assumed to be constant over frequency in order to simplify the analysis. For 
the filter to be lossless, Z must be a completely imaginary function of frequency which 

can be denoted by assigning reZ jZ . Using these details in (25) results in  

 

 
2 2 2

12
2 2 2

12

2

2 2
re S

re S re S

Z K R

Z K j R Z R

  

   

 (27) 

leading to 
 

 

 
4

22 2 2 2

1

2 2 4

re

S re S re

Z

R Z R Z


 
 (28) 
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After a bit more algebra, the solution is 2re SZ R  at the –3 dB frequency points.  

 A LC filter which is representative of Figure 17 is shown in the upper portion of 
Figure 18 with the equivalent physical representation shown in the lower portion. 
 

sR tC

cL

rL tC

sR

rL

sR tC effL tC

sR

cL

cL cL effL

 
Figure 18 Impedance inverter relationship with physical filter 

 
The simple relationship involved in equating the upper and lower portions of Figure 18 is  
 

 eff r cL L L   (29) 

 
Series resonance was assumed to occur at the center frequency of the filter which is 
consequently given by 

 
1

c

eff tL C
   (30) 

 
Combining this result with (26) produces 
 

 12
c

c c

eff t

L
K L

L C
   (31) 

 
  For the Z-branches consisting of Leff in series with Ct at the –3 dB points,  
 

 
1 1

2re S eff
t

Z R j L
j j C




 
    

 
 (32) 

 
leading to a quadratic equation in  given by 
 

 2 2 1 0eff t t SL C C R     (33) 

 
The –3 dB frequency points are finally given by 
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2

3

1
1

2 2
S t S

dB
effeff t eff

R C R

LL C L
     (34) 

 
The arithmetic center frequency for the filter follows as 
 

 
2

_

1
1

2
S t

arith center
effeff t

R C

LL C
    (35) 

 
and the 3 dB RF bandwidth of the filter is given by 
 

 3 Hz
2

S
dBHz

eff

R
B

L   (36) 

 
Following through with the remaining details, 
 

 

2

1
t

eff c

S
r eff c eff

c

C
L

R
L L L L







   
 (37) 

  
Summarizing the design steps, the impedance level for the filter’s core RS, the 

radian center frequency c, and the filter’s 3 dB RF bandwidth are first chosen. The 

inductance Leff follows directly from (36). Inductor Lc follows from S c cR L , and Lr 

follows thereafter from (37). The tuning capacitance value Ct is finally given by (30). 
 
The information provided in this section and §3 is sufficient to design 2nd-order 

bandpass filters using series-LC and parallel-LC resonators at one impedance level given 
by RS, but additional measures are needed in order to (i) make the filter designs 
frequency-tunable and (ii) arrive at convenient LC component values by using impedance 
scaling between the filter’s internal impedance level RS and the input/output port-
impedances which are typically both 50.  Both of these measures are accomplished by 
using capacitive-taps at the input and output of the filters as developed in the next 
section. 
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5 Input	and	Output	Capacitive‐Tapping	for	Impedance	Scaling	
Purposes	

 
The tapped-capacitors at the input and output of the filter shown in Figure 1 are used to 
accomplish several important purposes. First of all, they work together to present each 
resonator the Ct portion of the resonator shown in Figure 13 and Figure 18. As mentioned 
at the end of the previous section, the tapped-capacitors make it possible to scale the 
input and output port impedances (normally 50) up to higher or lower values as needed 
for constant-Q or constant-bandwidth filters as discussed in §1.1 of Part I of this paper. 
And finally, the tapped-capacitors add additional transmission zeros to the filter core 
thereby creating nearly symmetric lower and upper stopband attenuation characteristics. 
The design formula for tapped-capacitor sections (impedance step-up followed by 
impedance step-down) are developed in this section. 

5.1 Capacitive	Tap	for	Impedance	Step‐Up	
 
Under appropriate conditions, the tapped capacitors at the input and output ports can be 
viewed as impedance transformers. In order to see this, consider the input admittance Y 
of the tapped-capacitor arrangement shown in Figure 19. This admittance is given by 

sourceR

1C2C
Y

 
Figure 19 Tapped capacitor configuration for impedance step-up 

 

 
   

 

2
2 1 2 1 2

22 2
1 2

1

1

source source

source

j C R C C j R C C
Y

R C C

  



    
 

 (38) 

from which it follows that 
 

    
 

2

2
22 2

1 2

1
Re

1
source

source source

R C
Y

R R C C






 
 (39) 

Similarly, 
 

    
 

2 2
1 1 2

2 22 2
1 2

1
Im

1
source

source

R C C C
Y C

R C C






 


 
 (40) 

 
Thus far, no approximations have been made and these results are exact.  
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5.1.1 An	Approximate	Solution	for	C1	and	C2	in	Figure	19	
 

Starting from (39) and (40), note that if  22 2
1 2 1sourceR C C    that these results can 

be approximated by 
 

 

   
 

2

2
22 2

1 2

2

2

1 2

1
Re

1

1

source

source source

source

R C
Y

R R C C

C

R C C






 

 
   

 (41) 

 

   
 

2 2
1 1 2

2 22 2
1 2

1 2

1 2

1
Im

1
source

source

R C C C
Y C

R C C

C C

C C








 


 

 
   

 (42) 

Defining 

 1 2 1

2 2

1
C C C

n
C C


    (43) 

 
the source impedance Rsource is stepped up by a factor of n2 in (41) and Ct takes the form 
of C1 and C2 in parallel from (42). Note that n is strictly  1 so the port impedance Rsource 
is always stepped-up in magnitude. 
 The filter design process then follows these next guidelines. Assuming that Rs, 
c, Lc, Ct and Leff have already been calculated using the formulas in §3.1, the only 
remaining information required are the values for C1 and C2. It is known that 
 

 12 2

1 1

S source

J
R R n

   (44) 

 
from which it follows  

 S

source

R
n

R
  (45) 

and 

 1

2

1
C

n
C

   (46) 

 
From (42) and (46), it must also be true that 

 

 1 2
2

1 2

1
t

C C n
C C

C C n


 


 (47) 

 
leading to the final results  

 



 
 
Tunable Filters- Part II  Input and Output Capacitive Taps 

Copyright © 2017 AM1 LLC  21 of 56 
 

 2

1

1 t

t

n
C C

n
C nC





 (48) 

Example 
 
Picking up where the previous example left off in §3.1 and taking the input and output 
port  impedances to be 50, from (45) n = 2. Since Ct = 28.13 pF, from (48) C2 = 56.26 
pF and C1 = 56.26 pF. The resultant schematic is shown in Figure 20. 
 

16.4nH

127.3nH

16.4nH

50

5056.26 pF

56.26 pF 56.26 pF

56.26 pF

 
Figure 20 N = 2 bandpass filter including tapped-capacitor sections 

 
 The ABCD matrix for the reactance-portion of Figure 20 is given by 

 

  2
1

2
1

1
11 0

1
0 1

1 0 1 0
1

1 1
1 10 1

1
1 1 0

1
0 1

c

r r

sCABCD s
sC

sL

sL sL

sC
sC

 
            
   

                 
 

         

 (49) 

 
and the frequency response is shown in Figure 21. Since n is reasonably small, the 
approximations used in (41) and (42) hold up very well and this response is nearly 
identical to the first frequency response shown in Figure 15. Notice, however, that the 
attenuation at 50 MHz is about 5 dB more than in Figure 15 due to the additional 
transmission zeros from the tapped-capacitor arrangement. 
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Figure 21 Frequency response of the filter shown in Figure 20 which is very similar to the 
original filter response shown in Figure 15 

 
Figure 22 Close-up of the frequency response shown in Figure 21 showing some minor 
differences compared to Figure 16 

5.1.2 Exact	Solution	for	C1	and	C2	in	Figure	19	
 

The preceding section provided an approximate solution for capacitances C1 and C2 
while shedding some insight into why the tapped-capacitance values behave similarly to 
a transformer. Exact capacitance solutions are developed in this section. 
 Consider the equivalent RC networks (at one frequency) shown in Figure 23. The 
input impedance for the left-hand side of the figure is given by 
 

sourceR

1C2C

Z

SRtC

 
Figure 23 Network equivalence for impedance step-up tapped-capacitor network 
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t t t

t t

Z j C
R

R j R C

R C


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
 

  
 






 (50) 

 
The input impedance for the right-hand portion of the figure is given by 
 

 

   

1

1
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2
1

2 2
21 1

11

1

1 1

source

source

source source

source source

j R C
Z

j C R

R R C
j
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



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
 

   
 

 
   

   

 (51) 

 
 

Equating the real parts of (50) and (51) produces the first key result 
 

  2

1

1
1 1source

t t
source t

R
C R C

R R



         

 (52) 

 
Equating the imaginary parts of (50) and (51) produces the second key result 
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1
2 2 2 2

1
2 2 2

11 1
t t source

t t source

R C R C
C

R C R C

 
 


 

  
   

 (53) 

 
These results are considerably more complicated than the approximate solutions given 
for C1 and C2 in (48) but they are still only exact for the radian frequency . 

5.1.3 Making	the	Filter	Center	Frequency	Tunable	
 

A tunable filter requires electronically adjustable capacitor values. As argued earlier in 
Part I of this paper, it is desirable to leave all of the inductors fixed within the filter and 
only adjust the capacitance values. This results in (i) capacitance Ct having to change by 
a factor of 4x to change the filter’s center frequency by 2x, and (ii) the filter’s core 
impedance value RS necessarily being a function of the filter’s center frequency.  
 For best results, the J12 and K12 values should be based upon the geometric 
center frequency for the desired tuning range. Therefore, if the filter’s center frequency is 
to be tunable from flow to fhigh,  
 

 geo low highf f f  (54) 

 

and o in Table 2 should be replaced by 2geo geof  .  

 In order to deal with the frequency-dependent RS, Figure 23 must be modified to 
that shown in Figure 24. In this figure, Rgeo corresponds to RS at the geometric center 
frequency of the filter, and parameter   is a user-specified constant typically chosen to be 
between 1.0 and 2.0. A  value of 1.0 corresponds to a constant-Q tunable bandpass 
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filter whereas a value of 2.0 corresponds to a constant-bandwidth tunable filter. Other 
rather arbitrary types of RS frequency dependence could also be chosen of course, like 
making the filter constant-bandwidth in the lower-half of the tuning range and changing it 
to be constant-Q in the upper-half.  
 

sourceR

1C2C

Z

geo
geoR




 
  
 

tC

 
Figure 24 Network equivalence for impedance step-up tapped-capacitor network when 
center-frequency tunability is to be included 

 The value for n given earlier in §5.1.1 must be modified as 

 

2
geo

geo o

R
n

R





 

   
 

 (55) 

 

where source load oR R R  has been assumed going forward. The exact design formula 

given earlier in §5.1.2 must also be modified as 
 

 2 2
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1
1geo o

t o geo
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R
C C R R

R R
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  

    
               

 (56) 
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 
 
 

  
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        

 (57) 

 

5.2 Capacitive	Tap	for	Impedance	Step‐Down	
The development of the capacitive tap for stepping down the port impedances to a lower 
internal filter impedance is similar to what was performed in §5.1. The exact result for C1 
and C2 is a bit more tedious algebraically, however.  

2C

oR
1C

xZ
tC

geo
geoR




 
  
 

 
Figure 25 Tapped capacitor configuration for impedance step-down plus its desired 
equivalent 

 For the left-hand side of Figure 25, the input impedance is given by 
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 (58) 

 
which is to be equated with the input impedance of the right-hand side given by 
 

 x geo
geo t

j
Z R

C
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 
 
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 (59) 

For simplicity, let 

 t geo
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R R




 

   
 

 (60) 

 
Thus far, no approximations have been made. 

5.3 Approximate	Design	Formula	for	C1	and	C2	
Equating the real parts of (58) and (59) produces 
 

 

 

2

2

1 2
2

2 1 2

1 2

1

t o

o

C
C C

R R
C C

R
C C



 
  

 
   

 (61) 

 

If  
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2 1 2
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 , equation (61) can be simplified to 
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 (62) 

 

where once again 1

2

1
C

n
C

  and the tapped capacitances act similarly to a conventional 

transformer. Equating the imaginary parts of (58) and (59) produces 
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This equation can be rearranged to give 
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R R

C C C CC C C C



 

 
    
 

  

 (64) 
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with the same approximation used in simplifying (61). Multiplying the numerator and 
denominator by C1 and using the same approximation one more time finally results in  
 

 1 2tC C C   (65) 

 
Consequently, the approximate solutions are 
 

 
2

1

1

t

t

C
C

n
n

C C
n



   
 

 (66) 

5.3.1 Exact	Design	Formula	for	C1	and	C2	
The exact solution for C1 and C2 begins with equating (58) and (59) followed by a cross-
multiplication to produce 
 

  2
1 2 1 2 21t o o

t

j
R R C C j C C j R C

C
  


 

         
 

 (67) 

 
For the real part, 

 2 1 2
1 2 1o t

t

C C
R R C C

C
 
    (68) 

For the imaginary portion, 
 

  1 2
1 2 2o t o

t

C C
R R C C R C

C
      (69) 

which simplifies to 
 

  1 2
1 2 2

t

t o

RC C
C C C

C R
    (70) 

 

Note that the last two equations are cast in terms of 1 2C C and 1 2C C  and therefore not 

immediately separable. For simplification, let 
 

 

2

1
o t

t

t

o

a R R

b
C

R
d

R

 





 (71) 

 
Equations (68) and (70) can now be rewritten as 
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 
 

1 2 1 2

1 2 1 2 2

1aC C b C C

bC C d C C C

  

  
 (72) 

 
From the top equation in (72) it follows that 
 

 
 1 2

1 2

1 b C C
C C

a

 
  (73) 

 
Substituting this result into the lower equation in (72) results in  
 

 2 1C C    (74) 

with 

 

 

2

2

2

1

1

b
d

a
b

d
a
b

a
b

d
a








 


 

 (75) 

 
Substituting (74) back into the top equation in (72) finally produces a quadratic equation 
in C1 given by 
 

    2
1 1 1 0a C a b b C b          (76) 

 
The solution to this equation provides C1 and then C2 follows directly from using (74). 
 Returning to Rt, choosing  = 1 results in a constant-Q filter whereas choosing  = 
2 produces a constant-bandwidth filter just as seen earlier in §5.1.3.
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6 Tunable	Bandpass	Filter	Design	Examples	
 

The primary motivation for these filter topologies is that I intend to build a filter bank for 
some of my other projects that needs to continuously tune from about 10 MHz through 
1400 MHz. Using a switched filter bank (with fixed filters) is hardware prohibitive to say 
the least. The only plausible way to keep the overall size down is to use a bank of 
varactor-tuned filters in which each filter covers at least one octave. The bandpass nature 
of the 2nd order filters makes it possible to have a reasonable filter bank and still suppress 
2nd and higher harmonics by 50 dB or more. 
 When building such a filter bank, inductor values must be kept reasonable due to 
inductor-Q and self-resonance issues. In addition, using a limited set of common varactor 
capacitor values will go a long way to help keep the cost down. In this context, the four 
filter topologies I intend to use are summarized in Table 3. 
 
Table 3 Tunable Filter Topology Candidates 

A 

1C

cL

rL rL 1C

2C
2C

oR

 

Ro < Rinternal 
Inductor-pi 

B 

1C 1C

2C
2C

oR

oR

cL

rL rL

 

Ro < Rinternal 
Inductor-tee 

 

C 

oR 2C
2C

oR

1C 1C

cL

rL rL  
 

Ro > Rinternal 
Inductor-pi 

D 

oR 2C

cL

rL 2C

oR

rL

1C 1C
 

Ro > Rinternal 
Inductor-tee 

 

6.1 Design	Formula	Summary	
 
The earlier sections of this paper developed a number of perspectives for designing 2nd-
order bandpass filters having relatively symmetric lower and upper stopband attenuation 
characteristics. Admittedly, some design circumstances may actually desire more 
stopband attenuation in one or the other stopband regions, but only the symmetric 
stopband case has been considered in this paper.  
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The four circuit topologies shown in Table 3 are the only topologies being carried 

forward. There are actually only two different root-topologies (A & C) since the other two 
topologies can be directly obtained by using a pi-to-tee transformation on the center 
inductor portion.  
 Only the exact formula will be used for computing the input and output tapped-
capacitance values. The input and output port impedances will be assumed to be equal 
and represented by Ro.  
 

6.1.1 Topology	A	in	Table	3	
The design parameters required to start the design are 
 

flow Minimum tunable filter center frequency, Hz 
fhigh Maximum tunable filter center frequency, Hz 
Bgeo –3 dB RF filter bandwidth, Hz, at the geometric center frequency 
Rgeo Internal filter impedance at the geometric center frequency of the 

filter, . Check that Rt given by (60) is always greater than Ro at the 
band-edges of the filter. 

Ro Port impedance, usually taken to be 50 
 Constant value per §5.1.3. A value of 1.0 results in a constant-Q 

filter design whereas a value of 2.0 results in a constant-bandwidth 
filter design. Any value in between will be a mixture of the two. 
Inductor-Q values will be more critical as  is increased. 

 
 The geometric center frequency for the filter is 
 

 2 rad/secgeo low highf f   (77) 

 
The coupling inductor Lc is simply 

 
geo

c
geo

R
L


  (78) 

 
and the total tuning capacitance at the geometric center frequency is given by 
 

 
1

2
tgeo

geo geo

C
R B

  (79) 

Continuing, 

 
2

1
eff

geo tgeo

L
C

  (80) 

and 

 
eff c

r
c eff

L L
L

L L



 (81) 

 
Since the inductance values are fixed in the filter, the total tuning capacitance is given by 
 

  
2

geo
t tgeoC C





 

  
 

 (82) 
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The tuning capacitances C1 and C2 are given by 
 

 2 2
1

1
1geo o

t o geo
o geo geo

R
C C R R

R R

 
  

    
               

 (83) 

 

 
 

1

2 2 2
1

2 2 22
12 11

t o

ogeo
t

geo

C R C
C

R C
C

R



 






 
 
 

  
   

        

 (84) 

6.1.2 Topology	B	in	Table	3	

For this topology, perform all of the computations in the previous section for Topology A, 
and then convert the inductive-pi (composed of Lr, Lc, and Lr) to a tee-section using the 
identity in §8. 

6.1.3 Topology	D	in	Table	3	
 

The design parameters required to start the design are the same as those specified in 
§6.1.1 and will not be repeated here. 
 The geometric center frequency for the filter is 
 

 2 rad/secgeo low highf f   (85) 

 
The coupling inductor Lc is simply 

 
geo

c
geo

R
L


  (86) 

and   

 
2
geo

eff

geo

R
L

B
  (87) 

From (86) and (87), 
 

 r eff cL L L   (88) 

 
Continuing, 

 
2

1
tgeo

eff geo

C
L 

  (89) 

and 
 

 

2

geo
t tgeoC C




 
  
 

 (90) 
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Next, define 

 

2

1

t geo
geo

o t

t

t

o

R R

a R R

b
C

R
d

R







 
   
 

 





 (91) 

 
and compute 

 

 

2

2

2

1

1

b
d

a
b

d
a
b

a
b

d
a








 


 

 (92) 

 
The solution for C1 is found by solving the quadratic equation 
 

    2
1 1 1 0a C a b b C b          (93) 

 
and C2 follows as 
 

 2 1C C    (94) 

6.1.4 Topology	C	in	Table	3	
 

For this topology, perform all of the computations in the previous section for Topology D, 
and then convert the inductive-tee (composed of Lr, Lc, and Lr) to a pi-section using the 
identity in §8. 
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6.2 Design	Examples	
 
Several filter examples will be considered in the following sections. Each frequency range 
presents its own variety of additional considerations as it pertains to component 
selection, stray capacitance and stray inductance, and the need for walls around the filter 
for improved stopband performance. These additional topics are, however, beyond the 
scope of this paper. 
 In order to have octave frequency coverage, the maximum-to-minimum 
capacitance ratio of the varactors must be greater than 4.0. It is also desirable to limit the 
number of different varactor types involved as well. The chosen varactors are 
summarized in Table 4. 
 It is generally insufficient to have the varactors only cover the required 
capacitance range as this might entail using the varactor with very low reverse-bias 
voltage values; even zero. This will lead to harmonic distortion and in the extreme case, 
unexpected distortion resulting from the varactor diodes being over-driven. An example 
distortion case is shown for the first example in Figure 30 through Figure 34. 
 

Table 4 Varactor Diodes 

Part No. Supplier Type Single-
Diode 

Cap(pF) / V 

C-Ratio Q @ 100 
MHz, 3V 

SMV1253-004LF Digikey / 
Skyworks 

Common-
Cathode 
SOT-23 

37(1) / 
4.6(4.7) 

12.3 146 

SMV1234-004LF Digikey / 
Skyworks 

Common-
Cathode 
SOT-23 

6.5(1) / 
2.8(6) 

2.8 – 3.4 1800 

SMV2022-004LF Mouser / 
Skyworks 

Common-
Cathode 
SOT-23 

7.5(0) / 
0.8(15) 

6  

SMV1213-004LF Digikey / 
Skyworks 

Common-
Cathode 
SOT-23 

22.8(0.5) / 
1.9(8.0) 

12  

 

6.2.1 Example	1:	10	MHz	to	20	MHz	
 

---------------------------------- 
        Design Parameters         
---------------------------------- 
>>> Low frequency tuning limit 10.000000, MHz 
>>> High frequency tuning limit 20.000000, MHz 
>>> Geometric center frequency 14.142136, MHz 
>>> Internal filter impedance at geometric center frequency 
20.000000 
>>> Bandwidth at geometric center frequency 2.000000, MHz
>>> gamma 1.000000 
 

Inductance Tee: 
   Lr (nH) =      2025.71171  
   Lc (nH) =       225.07908 
  
Inductance Pi: 
   Lr(nH) =      2475.86987 
   Lc(nH) =     22282.82882 
 
Freq, MHz     C1, pF      C2, pF    
---------------------------------------- 
10.00          52.92        60.63 
14.14          20.74        35.86 
20.00            6.99        21.24 
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Figure 26 Frequency sweep with ideal LC components 

 
Figure 27 Tuning capacitance values for C1 and C2 associated with 
Figure 26 

220nH
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shuntV

10nF

10k
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1k
seriesV10nF

10k

10k

1k
shuntV10nF

2 H 2 H

 
Figure 28 Schematic for 10 MHz to 20 MHz tunable bandpass filter 
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Figure 29 LTspice5 schematic version of Figure 28. Inductor Q’s at fgeo assumed to be 50. 

 

 
Figure 30 FilOut1 voltage waveform for Figure 29 using input peak-voltage for V1 of 0.5V 

 

 
Figure 31 FFT of FilOut1 for V1 magnitude of 0.5V  peak. Harmonic distortion terms are visible but other 
visible distortion elements are likely due to numerical artifacts. Notice that even-order harmonics are 
substantially suppressed due to using the back-to-back varactors. 

 

                                                      
5  Not all Spice programs are identical. One other Spice program I frequently use limited the model parameter M to 
0.90 when in fact in needed to be 39.7 per the SMV1470 datasheet. 
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Figure 32 FilOut1 voltage waveform associated with Figure 29 for input peak-voltage for V1 of 1.25V. 
Nonlinear distortion is becoming visible. 

 
Figure 33 FilOut1 voltage waveform associated with Figure 29 for input peak-voltage for V1 of 1.5V. 
Nonlinear distortion is now very apparent because varactor(s) are being over-driven 

 
Figure 34 FFT out FilOut1 for V1 magnitude of 1.5V peak. Distortion elements in the spectrum are clearly 
visible. 
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6.2.2 Example	2:	20	MHz	to	40	MHz	
 

---------------------------------- 
        Design Parameters         
---------------------------------- 
>>> Low frequency tuning limit 20.000000, MHz 
>>> High frequency tuning limit 40.000000, MHz 
>>> Geometric center frequency 28.284271, MHz 
>>> Internal filter impedance at geometric center frequency 
15.000000 
>>> Bandwidth at geometric center frequency 3.000000, MHz
>>> gamma 1.000000 
 

Inductance Tee: 
   Lr (nH) =      1040.99074 
   Lc (nH) =        84.40465 
  
Inductance Pi: 
   Lr(nH) =      1209.80005 
   Lc(nH) =     14920.86728 
  
Freq, MHz     C1, pF      C2, pF    
---------------------------------------- 
20.00          30.45        26.19 
28.28          12.75        15.51 
40.00            4.91          9.20 

 
 

 
Figure 35 Frequency sweep with ideal LC components 

 

 
Figure 36 Tuning capacitance values C1 and C2 associated with Figure 35 

 
 

10 15 20 25 30 35 40 45 50
-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency, MHz

G
a

in
, d

B

Low-Z Filter Response

20 25 30 35 40
0

10

20

30

40

50

60

Frequency, MHz

C
a

p
a

ci
ta

n
ce

, p
F

Tuning Capacitances vs Filter Center Frequency

 

 

C
1

C
2

C
t



 
 
Tunable Filters- Part II  Design Examples 

Copyright © 2017 AM1 LLC  37 of 56 
 

82nH
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Figure 37 Schematic for 20 MHz to 40 MHz tunable bandpass filter 

 

 
Figure 38 LTspice schematic version of Figure 37 

6.2.3 Example	2:	40	MHz	to	80	MHz	
 

---------------------------------- 
        Design Parameters         
---------------------------------- 
>>> Low frequency tuning limit 40.000000, MHz 
>>> High frequency tuning limit 80.000000, MHz 
>>> Geometric center frequency 56.568542, MHz 
>>> Internal filter impedance at geometric center frequency 
9.500000 
>>> Bandwidth at geometric center frequency 6.000000, MHz
>>> gamma 1.000000 

Inductance Tee: 
   Lr (nH) =       329.64707 
   Lc (nH) =        26.72814 
  
Inductance Pi: 
   Lr(nH) =       383.10335 
   Lc(nH) =      4724.94131 
  
Freq, MHz     C1, pF      C2, pF    
---------------------------------------- 
40.00          28.28        16.59 
56.57          12.58          9.80 
80.00            5.36          5.80 
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Figure 39 Frequency sweep with ideal LC components 

 
Figure 40 Tuning capacitance values for C1 and C2 associated with Figure 39 
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Figure 41 Schematic for 40 MHz to 80 MHz tunable bandpass filter 
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6.2.4 Example	3:	80	MHz	to	160	MHz	
 

---------------------------------- 
        Design Parameters         
---------------------------------- 
>>> Low frequency tuning limit 80.000000, MHz 
>>> High frequency tuning limit 160.000000, MHz 
>>> Geometric center frequency 113.137085, MHz 
>>> Internal filter impedance at geometric center frequency 
5.000000 
>>> Bandwidth at geometric center frequency 15.000000, 
MHz 
>>> gamma 1.000000 

Inductance Tee: 
Lr (nH) =        67.99264 
Lc (nH) =         7.03372 
  
Inductance Pi: 
Lr(nH) =        82.06008 
Lc(nH) =       793.24745 
  
Freq, MHz     C1, pF      C2, pF    
---------------------------------------- 
80.00          39.22        14.92 
113.14        18.21          8.69 
160.00          8.29          5.10 

 

 
Figure 42 Frequency sweep with ideal LC components 

 
Figure 43 Tuning capacitance values for C1 and C2 associated with Figure 42 
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Figure 44 Schematic for 80 MHz to 160 MHz tunable bandpass filter 

6.2.5 Example	4:	160	MHz	to	320	MHz	
 

---------------------------------- 
        Design Parameters         
---------------------------------- 
>>> Low frequency tuning limit 160.000000, MHz 
>>> High frequency tuning limit 320.000000, MHz 
>>> Geometric center frequency 226.274170, MHz 
>>> Internal filter impedance at geometric center frequency 
700.000000 
>>> Bandwidth at geometric center frequency 25.000000, 
MHz 
>>> gamma 1.000000 
 

Inductance Pi: 
   Lr (nH) =        41.72546 
   Lc (nH) =       492.36049 
  
Inductance Tee: 
   Lr(nH) =        35.67830 
   Lc(nH) =         3.02358 
  
Freq, MHz     C1, pF      C2, pF    
---------------------------------------- 
160.00          78.71        37.46 
226.27          46.18        17.40 
320.00          26.92          8.21 
 

 

 
Figure 45 Frequency sweep with ideal LC components 
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Figure 46 Tuning capacitance values for C1 and C2 associated with Figure 45 
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Figure 47 Schematic for 160 MHz to 320 MHz tunable bandpass filter 

6.2.6 Example	5:	320	MHz	to	640	MHz	
 

---------------------------------- 
        Design Parameters         
---------------------------------- 
>>> Low frequency tuning limit 320.000000, MHz 
>>> High frequency tuning limit 640.000000, MHz 
>>> Geometric center frequency 452.548340, MHz 
>>> Internal filter impedance at geometric center frequency 
900.000000 
>>> Bandwidth at geometric center frequency 50.000000, 
MHz 
>>> gamma 1.000000 
 

Inductance Pi: 
   Lr (nH) =        26.82351 
   Lc (nH) =       316.51745 
  
Inductance Tee: 
   Lr(nH) =        22.93605 
   Lc(nH) =         1.94373 
  
Freq, MHz     C1, pF      C2, pF    
---------------------------------------- 
320.00          34.39        13.79 
452.55          20.09          6.48 
640.00          11.64          3.08 
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Figure 48 Frequency sweep with ideal LC components 

 
Figure 49 Tuning capacitance values for C1 and C2 associated with Figure 48 
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Figure 50 Schematic for 320 MHz to 640 MHz tunable bandpass filter 
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6.3 Example	6:	640	MHz	to	1280	MHz	
 

---------------------------------- 
        Design Parameters         
---------------------------------- 
>>> Low frequency tuning limit 640.000000, MHz 
>>> High frequency tuning limit 1280.000000, MHz 
>>> Geometric center frequency 905.096680, MHz 
>>> Internal filter impedance at geometric center frequency 
490.000000 
>>> Bandwidth at geometric center frequency 100.000000, 
MHz 
>>> gamma 1.000000 

Inductance Pi: 
   Lr (nH) =           7.30196 
   Lc (nH) =        86.16308 
  
Inductance Tee: 
   Lr(nH) =         6.243706 
   Lc(nH) =        0.52913 
  
Freq, MHz     C1, pF      C2, pF    
---------------------------------------- 
640.00          23.74        14.74 
905.10          13.99          6.71 
1280.00          8.21          3.11 

 

 
Figure 51 Frequency sweep with ideal LC components 

 

 
Figure 52 Tuning capacitance values for C1 and C2 associated with Figure 51 

                                                      
6  4.9 nH in the schematic Figure 53 to account for stray inductance of varactors. 
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Figure 53 Schematic for 640 MHz to 1280 MHz tunable bandpass filter. Shunt inductive element is 
microstrip representing about 0.53 nH. 
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6.4 Measured	Performance	Preliminaries	
 
A means for tuning each filter is required before any filter characterization can be done. 
Since the varactor-pairs are not necessarily matched devices, two independent series-
tune voltages and two independent parallel-tune voltages are ideally required. Depending 
upon the results, it may also be desirable to slave the voltages to one another so that 
only one series and one parallel tune voltage value are used. 
 Rather than arrange four laboratory voltage supplies to provide these tuning 
voltages, it proved more convenient to program an Arduino Uno microprocessor to 
provide the voltages by way of its PWM analog outputs. These outputs must be heavily 
filtered of course, but this was anticipated early on in the project and posed no additional 
requirements. A photograph of the circuitry involved is shown in Figure 54. The LCD 
display was configured with individual sliders for individually controlling each tuning 
voltage and the corresponding voltage is shown numerically in mV to the right of each 
respective slider. The toggle switches at the bottom make it a simple matter to slave the 
two series voltages and or two parallel tuning voltages together. 
 The filtered PWM output voltages are increased by a factor of 3 and further 
filtering applied on the prototype filter board. The varactor tuning voltages can 
consequently span from about 0V up to about 15V. 
 
 

 
Figure 54 Arduino Uno with attached LCD panel for creation of varactor tuning voltages. 
Touch-sliders on the panel are used to individually adjust all four tuning voltages while 
the toggle switches make it possible to also slave the series and or parallel voltages to 
one another. The numerical display readout is in mV for each respective voltage. 

 

6.5 Performance	Results	
 

Owing to the length of this memo, the final performance results will be presented in Part 
III. 
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8 Appendix:	Inductor	Pi‐to‐Tee	Transformation	
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Figure 55 Inductor pi-to-tee equivalences as given by (95) and (96) 
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9 Appendix:	N=2	Tunable	Bandpass	Filter	Design	Aid	
 

%=================== u24160_filter_design_aid.m ========================= 
% 
%   N=2 Tunable Bandpass Filter Design Aid 
%   u24160   May, 2017 
%   Copyright 2017 AM1 LLC 
% 
function u24160_filter_design_aid() 
% 
global Ro; 
global Rgeo; 
global gamma; 
global flow; 
global fhigh; 
global Bgeo; 
global pi; 
global wgeo; 
global Ctgeo; 
  
pi= 3.141592654; 
Ro= 50; 
Rgeo= 200; 
gamma= 1; 
flow= 10; 
fhigh= 25; 
Bgeo= 2; 
  
loop= true; 
while( loop ) 
    % 
    % 
    disp( '1    Enter flow, MHz' ); 
    disp( '2    Enter fhigh, MHz' ); 
    disp( '3    Enter Rgeo' ); 
    disp( '4    Enter bandwidth at fgeo, MHz' ); 
    disp( '5    gamma' ); 
    disp( ' ' ); 
    disp( '6    C O M P U T E' ); 
    disp( ' ' ); 
    disp( '9    Display design parameters' ); 
    disp( '0    Exit' ); 
    disp( ' ' ); 
     
    vx= input( '??', 's' ); 
     
    switch( vx ) 
        case '1' 
            flow= input( 'Flow, MHz  ' ); 
        case '2' 
            fhigh= input( 'Fhigh, MHz  ' ); 
        case '3' 
            Rgeo= input( 'Rgeo  ' ); 
        case '4' 
            Bgeo= input( 'Bgeo, MHz' ); 
        case '5' 
            gamma= input( ' gamma ' ); 
        case '6' 
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            compute(); 
        case '9' 
            disp( '----------------------------------' ); 
            disp( '        Design Parameters        ' ); 
            disp( '----------------------------------' ); 
            disp( num2str( flow, '>>> Low frequency tuning limit %f, MHz' 
) ); 
            disp( num2str( fhigh, '>>> High frequency tuning limit %f, 
MHz' ) ); 
            disp( num2str( sqrt(flow*fhigh), '>>> Geometric center 
frequency %f, MHz' ) ); 
            disp( num2str( Rgeo, '>>> Internal filter impedance at 
geometric center frequency %f' ) ); 
            disp( num2str( Bgeo, '>>> Bandwidth at geometric center 
frequency %f, MHz' ) ); 
            disp( num2str( gamma,'>>> gamma %f' ) ); 
            disp( ' ' ); 
        case '0' 
            loop= false; 
    end 
    %wgeo= sqrt( flow*fhigh )*2*pi*1e6; 
    %Ctgeo= 1/( sqrt(2)*pi*Rgeo*Bgeo ); 
end 
end 
%====================================================================== 
% 
% 
function compute() 
% 
global Ro; 
global Rgeo; 
global gamma; 
global flow; 
global fhigh; 
global Bgeo; 
global pi; 
global wgeo; 
global Ctgeo; 
  
if( Rgeo > Ro ) 
    % 
    %   Core impedance is > Ro 
    % 
    fgeo= sqrt(flow*fhigh); 
    Ctgeo= 1/(sqrt(2)*pi*Rgeo*Bgeo*1e6); 
    wgeo= 2*pi*fgeo*1e6; 
    Lc= Rgeo/wgeo; 
    Leff= 1/(wgeo^2 * Ctgeo); 
    Lr= Leff*Lc/(Lc - Leff); 
    % 
    %   Look at values at flow, fgeo, and fhigh 
    % 
    wlow= 2*pi*flow*1e6; 
    whigh= 2*pi*fhigh*1e6; 
    wgeo= sqrt(wlow*whigh); 
     
    [C1xlow, C2xlow]= C12forHighZ(wlow); 
    [C1xgeo, C2xgeo]= C12forHighZ(wgeo); 
    [C1xhigh, C2xhigh]= C12forHighZ(whigh); 
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    disp( 'Inductance Pi:' ); 
    disp( num2str( Lr*1e9, 'Lr (nH) = %15.5f' ) ); 
    disp( num2str( Lc*1e9, 'Lc (nH) = %15.5f') ); 
    disp( ' ' ); 
    disp( 'Inductance Tee:' ); 
    [Ltee_a, Ltee_b, Ltee_c]= Lpi2tee( Lr, Lc, Lr ); 
    disp( num2str( Ltee_a*1e9, 'Lr(nH) = %15.5f' ) ); 
    disp( num2str( Ltee_b*1e9, 'Lc(nH) = %15.5f' ) ); 
     
     
    disp( ' ' ); 
    disp( 'Freq, MHz     C1, pF      C2, pF    ' ); 
    disp( '----------------------------------------' ); 
    disp( [num2str( flow, '%8.2f' ), '          ',    
num2str(C1xlow*1e12, '%8.2f'), '        ', num2str(C2xlow*1e12, '%8.2f') 
] ); 
    disp( [num2str( fgeo, '%8.2f' ), '          ',    
num2str(C1xgeo*1e12, '%8.2f'), '        ', num2str(C2xgeo*1e12, '%8.2f') 
] ); 
    disp( [num2str( fhigh,'%8.2f' ), '          ',    
num2str(C1xhigh*1e12,'%8.2f'),'        ', num2str(C2xhigh*1e12, '%8.2f') 
] ); 
  
    fig1= figure(1); 
    clf; 
    axes( 'FontName', 'Arial', 'FontSize', 12 ); 
     
    Npts= 256; 
    ii=1:Npts; 
    fswp= flow-3*Bgeo + (fhigh-flow+6*Bgeo)*(ii-1)/Npts; 
    [gaindB]= sweepHighZnet( fswp, Lr, Lc, C1xlow, C2xlow ); 
    p1= plot( fswp, gaindB, 'r' ); 
    set( p1, 'LineWidth', 2 ); 
    hold on 
     
    [gaindB]= sweepHighZnet( fswp, Lr, Lc, C1xgeo, C2xgeo ); 
    p1= plot( fswp, gaindB, 'k--' ); 
    set( p1, 'LineWidth', 2 ); 
    hold on     
     
    [gaindB]= sweepHighZnet( fswp, Lr, Lc, C1xhigh, C2xhigh ); 
    p1= plot( fswp, gaindB, 'm:' ); 
    set( p1, 'LineWidth', 2 ); 
    hold on     
     
    grid on 
    xlabel( 'Frequency, MHz', 'FontName', 'Arial', 'FontSize', 12 ); 
    ylabel( 'Gain, dB', 'FontName', 'Arial', 'FontSize', 12 ); 
    title( 'High-Z Filter Response', 'FontName', 'Arial', 'FontSize', 14 
); 
    h= gca; 
    set( h, 'LineWidth', 2 ); 
     
    % 
    %   Plot tuning capacitances versus frequency 
    % 
    Np= 64; 
    jk=1:Np; 
    fswp= ( flow + (fhigh-flow)*(jk-1)/(Np-1) ); 
    fgeo= sqrt(flow*fhigh); 
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    for jk=1:Np 
            [C1y, C2y]= C12forHighZ(2*pi*fswp(jk)*1e6); 
            C1p(jk)= C1y*1e12; 
            C2p(jk)= C2y*1e12; 
            Ctp(jk)= (fgeo/fswp(jk))^2 * Ctgeo * 1e12; 
    end 
    figure(2); 
    clf; 
    axes( 'FontName', 'Arial', 'FontSize', 12 ); 
    p1= plot( fswp, C1p, 'r' ); 
    set( p1, 'LineWidth', 2 ); 
    hold on 
    p1= plot( fswp, C2p, 'b--' ); 
    set( p1, 'LineWidth', 2 ); 
    hold on 
    p1= plot( fswp, Ctp, 'k:' ); 
    set( p1, 'LineWidth', 2 );     
     
    grid on 
    xlabel( 'Frequency, MHz', 'FontName', 'Arial', 'FontSize', 12 ); 
    ylabel( 'Capacitance, pF', 'FontName', 'Arial', 'FontSize', 12 ); 
    title( 'Tuning Capacitances vs Filter Center Frequency', 'FontName', 
'Arial', 'FontSize', 14 ); 
    h= gca; 
    set( h, 'LineWidth', 2 ); 
    legend( 'C_1', 'C_2', 'C_t' ); 
    
else 
    % 
    %   Core impedance Rgeo < Ro 
    % 
    fgeo= sqrt(flow*fhigh); 
    wgeo= 2*pi*fgeo*1e6; 
     
    Leff= Rgeo/(sqrt(2)*pi*Bgeo*1e6); 
    Lc= Rgeo/wgeo; 
    Lr= Leff - Lc; 
     
    Ctgeo= 1/(Leff*wgeo^2); 
    % 
    %   Look at values at flow, fgeo, and fhigh 
    % 
    wlow= 2*pi*flow*1e6; 
    whigh= 2*pi*fhigh*1e6; 
    wgeo= sqrt(wlow*whigh); 
     
    [C1xlow, C2xlow]= C12forLowZ(wlow); 
    [C1xgeo, C2xgeo]= C12forLowZ(wgeo); 
    [C1xhigh, C2xhigh]= C12forLowZ(whigh); 
     
    disp( 'Inductance Tee:' ); 
    disp( num2str( Lr*1e9, 'Lr (nH) = %15.5f' ) ); 
    disp( num2str( Lc*1e9, 'Lc (nH) = %15.5f') ); 
    disp( ' ' ); 
    disp( 'Inductance Pi:' ); 
    [Lpi1, Lpi2, Lpi3]= Ltee2pi( Lr, Lc, Lr ); 
    disp( num2str( Lpi1*1e9, 'Lr(nH) = %15.5f' ) ); 
    disp( num2str( Lpi2*1e9, 'Lc(nH) = %15.5f' ) );     
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    disp( ' ' ); 
    disp( 'Freq, MHz     C1, pF      C2, pF    ' ); 
    disp( '----------------------------------------' ); 
    disp( [num2str( flow, '%8.2f' ), '          ',    
num2str(C1xlow*1e12, '%8.2f'), '        ', num2str(C2xlow*1e12, '%8.2f') 
] ); 
    disp( [num2str( fgeo, '%8.2f' ), '          ',    
num2str(C1xgeo*1e12, '%8.2f'), '        ', num2str(C2xgeo*1e12, '%8.2f') 
] ); 
    disp( [num2str( fhigh,'%8.2f' ), '          ',    
num2str(C1xhigh*1e12,'%8.2f'),'        ', num2str(C2xhigh*1e12, '%8.2f') 
] ); 
  
    fig1= figure(1); 
    clf; 
    axes( 'FontName', 'Arial', 'FontSize', 12 ); 
     
    Npts= 256; 
    ii=1:Npts; 
    fswp= flow-3*Bgeo + (fhigh-flow+6*Bgeo)*(ii-1)/Npts; 
    [gaindB]= sweepLowZnet( fswp, Lr, Lc, C1xlow, C2xlow ); 
    p1= plot( fswp, gaindB, 'r' ); 
    set( p1, 'LineWidth', 2 ); 
    hold on 
     
    [gaindB]= sweepLowZnet( fswp, Lr, Lc, C1xgeo, C2xgeo ); 
    p1= plot( fswp, gaindB, 'k--' ); 
    set( p1, 'LineWidth', 2 ); 
    hold on     
     
    [gaindB]= sweepLowZnet( fswp, Lr, Lc, C1xhigh, C2xhigh ); 
    p1= plot( fswp, gaindB, 'm:' ); 
    set( p1, 'LineWidth', 2 ); 
    hold on     
     
    grid on 
    xlabel( 'Frequency, MHz', 'FontName', 'Arial', 'FontSize', 12 ); 
    ylabel( 'Gain, dB', 'FontName', 'Arial', 'FontSize', 12 ); 
    title( 'Low-Z Filter Response', 'FontName', 'Arial', 'FontSize', 14 
); 
    h= gca; 
    set( h, 'LineWidth', 2 );    
     
     
    % 
    %   Plot tuning capacitances versus frequency 
    % 
    Np= 64; 
    jk=1:Np; 
    fswp= ( flow + (fhigh-flow)*(jk-1)/(Np-1) ); 
    fgeo= sqrt(flow*fhigh); 
    for jk=1:Np 
            [C1y, C2y]= C12forLowZ(2*pi*fswp(jk)*1e6); 
            C1p(jk)= C1y*1e12; 
            C2p(jk)= C2y*1e12; 
            Ctp(jk)= (fgeo/fswp(jk))^2 * Ctgeo * 1e12; 
    end 
     
    figure(2); 
    clf; 
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    axes( 'FontName', 'Arial', 'FontSize', 12 ); 
    p1= plot( fswp, C1p, 'r' ); 
    set( p1, 'LineWidth', 2 ); 
    hold on 
    p1= plot( fswp, C2p, 'b--' ); 
    set( p1, 'LineWidth', 2 ); 
    hold on 
    p1= plot( fswp, Ctp, 'k:' ); 
    set( p1, 'LineWidth', 2 );     
     
    grid on 
    xlabel( 'Frequency, MHz', 'FontName', 'Arial', 'FontSize', 12 ); 
    ylabel( 'Capacitance, pF', 'FontName', 'Arial', 'FontSize', 12 ); 
    title( 'Tuning Capacitances vs Filter Center Frequency', 'FontName', 
'Arial', 'FontSize', 14 ); 
    h= gca; 
    set( h, 'LineWidth', 2 ); 
    legend( 'C_1', 'C_2', 'C_t' );     
end 
     
end 
%========================================================================
= 
  
  
function [C1x, C2x]= C12forHighZ( w ) 
global Ro; 
global Rgeo; 
global gamma; 
global flow; 
global fhigh; 
global Bgeo; 
global pi; 
global wgeo; 
global Ctgeo; 
  
Ct= (wgeo/w)^2 * Ctgeo; 
  
C1x= (1/w/Ro)*sqrt( (wgeo/w)^gamma * (Ro/Rgeo) + (w*Ct)^2 
*Ro*Rgeo*(w/wgeo)^gamma - 1); 
C2x= 1/( w^2 *Ct/( (wgeo/w)^(2*gamma) * (1/Rgeo)^2 + (w*Ct)^2 ) - ... 
      (w*Ro)^2 *C1x/( 1 + (w*Ro*C1x)^2 ) ); 
end 
%========================================================================
= 
  
function [gaindB]= sweepHighZnet( fswp, Lr, Lc, C1, C2 ) 
% 
global Ro; 
  
jx= sqrt(-1); 
gaindB= zeros(1,length(fswp)); 
for ii=1:length(fswp) 
    ww= 2*pi*fswp(ii)*1e6; 
    abcd= [1 Ro; 0 1]; 
    abcd= abcd*[ 1 0; jx*ww*C1 1] * [1 1/(jx*ww*C2); 0 1] * [1 0; 
1/(jx*ww*Lr) 1 ]; 
    abcd= abcd * [1 jx*ww*Lc; 0 1] * [1 0; 1/(jx*ww*Lr) 1] * [1 
1/(jx*ww*C2); 0 1]; 
    abcd= abcd * [1 0; jx*ww*C1 1] * [1 0; 1/Ro 1]; 
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    gaindB(ii)= -20*log10( abs(abcd(1,1)) ) + 20*log10(2); 
end     
     
end 
%========================================================================
= 
  
  
function [C1x, C2x]= C12forLowZ( w ) 
global Ro; 
global Rgeo; 
global gamma; 
global flow; 
global fhigh; 
global Bgeo; 
global pi; 
global wgeo; 
global Ctgeo; 
  
Ct= (wgeo/w)^2 * Ctgeo; 
Rt= (w/wgeo)^gamma * Rgeo; 
  
aa= -w^2 * Ro*Rt; 
bb= 1/Ct; 
dd= Rt/Ro; 
  
alpha= (dd - bb^2/aa) / (1 - dd + bb^2/aa); 
beta= (bb/aa)/( 1 - dd + bb^2/aa); 
  
A= aa*alpha; 
B= aa*beta+bb+bb*alpha; 
C= bb*beta-1; 
  
C1x= -B/(2*A) - sqrt( B^2 - 4*A*C)/(2*A); 
C2x= alpha*C1x + beta; 
  
end 
%========================================================================
= 
  
  
function [gaindB]= sweepLowZnet( fswp, Lr, Lc, C1, C2 ) 
% 
global Ro; 
  
jx= sqrt(-1); 
gaindB= zeros(1,length(fswp)); 
for ii=1:length(fswp) 
    ww= 2*pi*fswp(ii)*1e6; 
    abcd= [1 Ro; 0 1]; 
    abcd= abcd * [1 1/(jx*ww*C2); 0 1] * [1 0; jx*ww*C1 1] * [1 jx*ww*Lr; 
0 1]; 
    abcd= abcd * [1 0; 1/(jx*ww*Lc) 1] * [1 jx*ww*Lr; 0 1] * [1 0; 
jx*ww*C1 1]; 
    abcd= abcd *[ 1 1/(jx*ww*C2); 0 1] * [1 0; 1/Ro 1]; 
    gaindB(ii)= -20*log10( abs(abcd(1,1)) ) + 20*log10(2); 
end     
     
end 
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function [Lc, Lb, La]= Lpi2tee( L1, L2, L3 ) 
sigma= L1 + L2 + L3; 
La= L2*L3/sigma; 
Lb= L1*L3/sigma; 
Lc= L1*L2/sigma; 
end 
  
function [L1, L2, L3]= Ltee2pi( La, Lb, Lc ) 
delta= La*Lb + Lb*Lc + La*Lc; 
L1= delta/La; 
L2= delta/Lb; 
L3= delta/Lc; 
end 
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Corrections 
 

Version Date Comments 
1.0 14 May 2017 Original 
1.1 7 Jan 2017 Found that “C” and “D” had been improperly swapped in §6.1.3 §6.1.4. 

Corrections made 7 Jan 2018. 
 
 
 


