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Synopsis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Classical LC filter design is becoming increasingly rare in much of the RF 
design community. This is in part due to the domination of direct-conversion in 
up- and down-converters and the widespread availability of excellent off-the-
shelf filter components (e.g., SAW filters).  

Whether the occasion be discrete design or on-chip integrated design, 
the need for tunable bandpass filters still arises. In Part I of this article, single-
pole bandpass filter design is considered for situations where passband 
flatness is not overly demanding but insertion loss may be a critical 
requirement. Part II of this article looks at the design of 2nd-order tunable 
bandpass filters which may prove indispensable in some circumstances. 
 This paper contains both tutorial as well as more academic material, 
and should be sufficient to form a starting point for real hardware design efforts.     
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1 Why	Tunable	Filters?	
 

Tunable filters can be indispensable when selectivity requirements would otherwise 
translate into a prohibitively large number of fixed filters in a switched-filter bank. To 
illustrate this point, consider a situation where the desired signal frequency ranges from 
fsigmin = 100 MHz to fsigmax = 200 MHz and a specified amount of stopband attenuation 
must be applied to the 2nd (and higher) harmonic of the signal thereby dictating a 
stopband which spans from 200 MHz to 400 MHz for the 2nd harmonic. 
 If the switched bank of filters consists of strictly Butterworth lowpass filters1, the 
stopband attenuation for a specific filter is given by 
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where fc is the –3 dB corner frequency of the filter and N is the order of the filter. For a 
specified amount of attenuation in the frequency stopband, (1) can be rewritten as 
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where the stopband attenuation requirement is given by Astop. These filter quantities are 
related as shown in Figure 1. In order to adequately suppress the second harmonic of the 
signal, it must be true that 

 _2 sig min stopf f  (3) 

 
Consequently, the useable frequency range for the kth lowpass filter in the filter bank is 
given by 
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Figure 1 Key frequencies as they pertain to a single Butterworth lowpass filter 

                                                      
1  Normally, elliptic or Chebyshev filters would be used for greater economy, but the underlying arguments are the 
same. 
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The relationship between fstop and fpass for the kth filter in (4) is dictated by the minimum 
stopband attenuation requirement Astop by way of (2). 

In this present context, it has been assumed that the output signal’s amplitude 
can vary up to –3 dB due to the roll-off of the Butterworth filters at fpass. If less signal level 
variation is required, more Butterworth filters will be required in the filter bank or a 
different filter family (e.g., elliptical) will have to be adopted.  

It will prove very helpful to compute the filter shape factor2 for the Butterworth 
lowpass filter family based upon (2) as done in Table 1. The smaller the shape factor in 
Table 1, the more selective the filter is. In order to be useful for 2nd harmonic 
suppression, the shape factor must be less than 2. 

 
Table 1 Butterworth Lowpass Filter Shape Factors 

Filter Order Minimum Stopband Attenuation, dB 
 10 20 30 40 50

1 3 9.95 31.61 – – 
3 1.44 2.15 3.16 4.64 6.81 
5 1.25 1.58 2.00 2.51 3.16 
7 1.17 1.39 1.64 1.93 2.28 
9 1.13 1.29 1.47 1.67 1.90 

 
 For the given example, assume that the minimum stopband attenuation 
requirement is 40 dB. In order to have a reasonably sized filter bank, the shape factor 
must be as small as possible compared to 2. For this 40 dB example, a 9th-order 
Butterworth lowpass has an associated shape factor of 1.67 from Table 1. The corner 
frequencies for the constituent lowpass filters are given by 
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where fc(0) = fsigmin.  Consequently, the corner frequencies for this example are {119.8, 
143.4, 171.8, 205.8 } MHz and a minimum of four 9th-order Butterworth lowpass filters are 
required plus a supporting switch fabric as shown in Figure 2. This represents a fair 
amount of circuit complexity for covering a single octave in frequency.  

 

100 120

120 143

143 172

172 200

 
Figure 2 Idealized switched filter bank using four 9th-order Butterworth lowpass 
filters 

Smaller shape factors can be realized using Chebyshev or elliptical filters, but the 
computations given by (5) would still apply. 

                                                      
2  The shape factor for a lowpass filter is given by /stop passf f . In [1], this same quantity is referred to as the filter’s 

steepness factor. 
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Filter Banks Using Bandpass Filters 
  
Alternatively, a switched bank of Butterworth bandpass filters can be considered. The 
number of filters required will generally be less if bandpass filters are used, but the circuit 
complexity still remains fairly high.  
 In the Butterworth bandpass filter case, (1) still applies provided that the quantity 
in parentheses is replaced by the lowpass-to-bandpass frequency transformation which is 
given by3 
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where fo is the center frequency of the filter involved and B is the filter’s ripple-bandwidth 
(–3 dB bandwidth in the case of Butterworth bandpass filters). This is not the only means 
to create a bandpass filter shape, but it is very convenient for the discussions underway 
here. Bandpass filters of this form exhibit geometric frequency symmetry4 about the 
center frequency, but arithmetic symmetry can be assumed with little loss of precision so 
long as the filter’s percentage bandwidth remains small (typically < 20%). The 

frequencies corresponding to the filter’s –3 dB edges occur for   1u f   , namely 
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 To illustrate the difference between arithmetic and geometric symmetry, the gain 
characteristics for a 5th-order Butterworth bandpass filter having a 20% bandwidth are 
shown in Figure 3. As the percentage bandwidth gets smaller, the two frequency 
responses becomes increasingly the same as shown in Figure 4. 
 

 
Figure 3 Frequency responses for N = 5 Butterworth bandpass filter having 20 MHz –3 
dB bandwidth exhibiting (i) arithmetic symmetry and (ii) geometric symmetry 

                                                      
3  See Chapter 5 of [1]. 
4  See Chapter 5 of [1]. 

50 60 70 80 90 100 110 120 130 140 150
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency, MHz

G
ai

n,
 d

B

Butterworth Bandpass Filter

 

 

Arithmetic Symmetry
Geometric Symmetry



 
Tunable Filters  Why Tunable Filters? 

Copyright © 2017  5 of 34 

 
Figure 4 5th order Butterworth bandpass filter with 7% fractional bandwidth illustrating the 
similarities between the arithmetic symmetric response and geometric symmetric 
response for smaller percentage bandwidth cases 

Returning now to (7), notice that the –3 dB bandwidth of the filter is precisely B Hertz 
whereas the center frequency of the filter is shifted slightly higher than fo. So long as the 
filter’s percentage bandwidth5 remains less than 20%, the center frequency shift will be 
less than 0.5%.  
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Figure 5 Useable frequency range for an individual Butterworth bandpass filter 

 The useable frequency range for an individual Butterworth bandpass filter can be 
determined by making use of Figure 5. At the low-end of the useable frequency range, 

the allowable signal frequency equals approximately 6  / 2of B  and the stopband 

attenuation at the 2nd harmonic of this frequency must meet the requirement stopA  (dB).  

Provided this is true and the stopband behavior is monotonic, the upper limit for the 

useable frequency range is simply given by / 2of B . The useable frequency range is 

then dictated by the filter’s shape factor as it pertains to the stopband attenuation 

requirement Astop and the lower frequency limit / 2of B .  

Referring to Figure 6, the passband width of the filter is B whereas the stopband 

width as it pertains to the 2nd harmonic of / 2of B  is  2 of B . The corresponding 

                                                      
5  Percentage bandwidth is defined here as B / fo. 
6  Making use of (7) while ignoring the quadratic term. 
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shape factor for the filter is then given by the ratio of the stopband frequency width to the 
passband frequency width as 
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Note that a filter’s shape factor may be defined differently in other situations. The shape 
factor given by (8) pertains only to the 2nd harmonic situation of interest here. The 

quantity / oB f  should also be recognized as the fractional bandwidth of the filter.  

 
Improved Shape Factor Precision 
 
The result given by (8) is the commonly used value for the filter’s shape factor, but the 
exact shape factor must generally be calculated using (6) because the true bandpass 
filter exhibits geometric frequency symmetry rather than arithmetic symmetry. 
 

2o

B
f 

3 dB

2o

B
f 

stopA dB

of

2 of BB

of B

 
Figure 6 Shape factor for a Butterworth bandpass filter 

Equation (6) should be thought of as a straight forward frequency transformation. It has 
already been stated that the transformed frequency value at the passband edges is (very 

nearly) 1. The transformed frequency value at the lowest 2nd harmonic value  2 of B  

is given by 

 2
2o

B
u f 

       
 (9) 

 
The transformed frequency value in the lower frequency stopband region is similarly 
given by 

  u B    (10) 

 
When the bandpass filter is constructed based upon (6), it turns out that the upper 
stopband attenuation characteristic is a bit more lazy than the lower stopband 

characteristic. Consequently, it is always true that    .  For example, if fo = 100 

MHz and B = 10 MHz, 13.737    whereas 99    . This is a result of the underlying 

geometric symmetry of the filter’s attenuation characteristic rather than it being arithmetic 
symmetric as discussed earlier regarding Figure 3. 
 It is very convenient to define a filter shape factor based upon the transformed 
frequency relationship. To this end, the transformed frequency passband width is simply 
2. Since the primary interest here pertains to suppressing frequency harmonics, the 
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transformed frequency stopband width will be taken to be 2  . The filter’s shape factor in 

terms of the transformed frequency quantities is then simply given by 2 / 2   . 

Based upon this result along with (1) and (6), the associated stopband attenuation is 
given by 

  2

1010log 1
N

stopA  
     (11) 

 
 Continuing on from (9), there is no need to carry the “+” subscript since only the 
upper stopband will be of interest from this point on. Equation (9) can be expanded to 
give 

    2 21 2 2 3 0o oB f B f       (12) 

 
This is a simple quadratic equation which can be solved for the bandwidth B given 
assumed values for the filter’s center frequency fo with the shape factor  again dictated 
by Table 1 for a given amount of required stopband attenuation. The solution can be 
expressed in terms of the fractional bandwidth () by dividing (12) by fo

2 as 
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which leads to 
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It is worthwhile comparing this exact result with the approximate result from (8). 

Equation (8) can be recast in terms of fractional bandwidth as 
 

 
2

2 bpfshapefactor
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The approximate relationship between filter shape factor and fractional 

bandwidth is given by (8) (assuming arithmetic filter symmetry) whereas the exact result 
is given by (14). These results are shown plotted together in Figure 7. The approximate 
result is always too optimistic in terms of the allowed filter passband width versus the 
exact result. In actual usage, the filter’s true frequency response should be used to 
determine how many bandpass filters are required in the filter bank. Even so, (14) is 
helpful for estimating purposes. 

Returning to the same example case with the desired frequency range spanning 
from 100 MHz to 200 MHz and the need to suppress all 2nd harmonic (and higher) terms 
by at least 40 dB, it would be attractive if the bandpass filter bank only required two 
switched filters. Based upon geometric symmetry arguments, this could be done with one 
filter’s passband covering 100 MHz to 141 MHz, and the second filter covering 141 MHz 
to 200 MHz, each representing a fractional bandwidth of about 35%. Equation (15)  
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Figure 7 Fractional bandwidth versus Butterworth bandpass filter shape factor assuming 
(i) arithmetic symmetry and (ii) geometric symmetry 

predicts that shapefactorbpf < 3.71 is required. Equation (13) can be used to express the 
exact shape factor  in terms of  as 
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thereby predicted a required shape factor 2.98  . Limiting design considerations to 

odd-ordered Butterworth bandpass filters, Table 1 shows that 5th-order bandpass filters 
will suffice for the 40 dB stopband attenuation requirement since 2.51 < 2.98. 
 Rather than require four 9th-order Butterworth lowpass filters, a filter bank using 
only two 5th-order Butterworth bandpass filters should achieve the same end result as 
shown in Figure 8. In Part II of this paper, however, it will be shown that a single N = 2 
tunable bandpass filter will deliver the same performance as well which would be a 
further reduction in hardware complexity as well as cost. 
 

100 141

141 200

 
Figure 8 Bandpass filter bank solution using 5th-order Butterworth bandpass filters with 
frequency responses for 4th-order and 5th-order bandpass filters shown in Figure 9 and 
Figure 10 

 In general, it is possible to conclude: 
 

 A filter bank using only lowpass filters results in the greatest hardware complexity 
 A filter bank using only bandpass filters offers a marked improvement over the 

lowpass filter bank in hardware complexity 
 Tunable bandpass filters offer the greatest reduction in hardware complexity. 
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Figure 9 Filter bank of Figure 8 using 4th-
order Butterworth bandpass filters 
successfully 

 
Figure 10 Filter bank of Figure 8 using 
5th-order Butterworth bandpass filters 
achieves the 40 dB stopband requirement 
with margin to spare 

Necessary Caveats 
 
Tunable bandpass filters are not always the answer, however. For example, 
 

 Switched lowpass filter banks are generally required in high power applications 
because filter insertion loss must be kept as low as possible. Inductor currents 
within bandpass filters typically scale with the filter-Q value which can make 
inductor heating and even arcing genuine concerns. 

 In ultra-low noise figure applications that require front-end filtering, lowpass LC 
filters will generally have less impact on noise figure than bandpass LC filters. 

1.1 Tunable	Bandpass	Filter	Assumptions	and	Guidelines	
 

In the traditional LC filter designs considered in this paper, the only physical components 
available are resistors, capacitors, and inductors. Generally speaking, it is true that: 
 

 Inductors are generally larger than capacitors, especially at lower frequencies. 
 Inductors are almost always more expensive than capacitors by a substantial 

margin. 
 Inductors exhibit unwanted magnetic coupling if they are situated too close to 

each other. 
 Inductor Q’s are generally worse than capacitor Q’s thereby largely dictating filter 

insertion loss. 
 Banks of switched inductors are usually hampered by size, coupling issues, and 

cost. 
 Tunable inductors are generally not available whereas tunable capacitors are 

available in the form of varactor diodes. 
 If one capacitor is adjusted versus frequency, all capacitors in the filter must 

generally be adjusted. 
 Ideal L’s and C’s are assumed. 
 Input and output port impedances will be assumed equal and constant; typically 

50. 
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Given these points, it is desirable to (i) only use switched capacitors or varactors for the 
tunable elements, and (ii) the number of inductors within a filter should be kept to a 
minimum. 
 The impedance level within a filter changes as the filter’s center frequency is 
changed. If this issue is not also dealt with, problems with insertion loss and selectivity 
will normally come into play. Consider the simple RLC circuit shown in Figure 11 having 
an adjustable capacitor for changing the resonant frequency. The resonant frequency is 
given by   

 

R C L

 
Figure 11 Parallel RLC circuit with adjustable capacitor 
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Since only the capacitance is adjustable, the resonant frequency is inversely proportional 

to C  so a 2:1 change in frequency will require a 4:1 change in capacitance. The quality 
factor Q of the resonator is given by 
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and is inversely proportional to the center frequency f  which is generally undesirable. In 

order to have a constant-Q resonator, the effective R must increase linearly with 
frequency. If the filter bandwidth is to remain constant with f , the filter Q must increase 

linearly with f  which means that the effective R must increase with 2f . These and other 

factors come into play when designing a tunable bandpass filter. 
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2 Getting	Started	
 

First-order LC bandpass filters based upon the general construct of cascading an input 
matching section, LC resonator, and output matching section are considered in this paper 
as suggested by Table 2. Other input and output matching sections are possible (e.g., all-
capacitor L, all-inductor L), but the focus will be kept on minimum-inductor topologies and 
those exhibiting the best likely performance.  
 
Table 2 First-Order LC Bandpass Filter Constructs Where An Entity From Each Column 
is Cascaded 

Input Matching Resonator Output Matching 

 

 

 

 

 

 
 
 

The pi- and tee-networks shown in Figure 12 can transform any R + jX  
impedance to any other R’ + jX’ impedance at a specific frequency. The input and output 
L-matching networks shown in Table 2 are not as flexible, however. Understanding their 
limitations is key to understanding how they should be selected in filter design.  
 

1C 2C

L
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1L 2L

 
Figure 12 pi-network and tee-network for impedance matching 

 Take for instance the simple case in Figure 13 which entails inserting a 
reactance (capacitive or inductive) jXs in series with a load Rs. The series and parallel 
networks are equivalent at a specific frequency provided that 
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where /s s sQ X R . Note that it is always true that p sR R   so the insertion of a series 

reactance is used to increase the real value of the impedance at a specific frequency. 
 

 

sjX
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pjX pRZ
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Figure 13 Equivalent series and parallel networks at a specific frequency 

 The converse is also true from Figure 13 where the inclusion of a shunt 
reactance Xp reduces the real impedance value at a specific frequency since 

 

2

2

1

1
1

p
s

p

p
s

p

R
R

Q

X
X

Q





 

   
 

 (20) 

where /p p pQ R X  

 

 
 

 Since equally-terminated filters will be assumed in this paper, stepping down the 
source impedance using an L-network will require stepping up the output impedance of 
the filter to match the load impedance. Similarly, if the source impedance is stepped up 
using an L-network, the output impedance of the filter must be stepped back down in 
order to compensate.  
 

 
 

 
 

 
 
 

Insertion of a series reactance is used to step-up the real impedance level. 

Insertion of a parallel reactance is used to step-down the real 
impedance level. 

The primary reasons for using input and output impedance matching 
networks are: 
 

1. To obtain desirable component values which reduce the 
effects of parasitics or component-related losses. 

2. To obtain the desired filter impedance behavior with filter 
center frequency as described in the context of §1.1 
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3 A	Simple	First‐Order	Bandpass	Filter	
 

One of the most simple first-order bandpass filter constructs is shown here in Figure 14. 
In principle, the series resonator would suffice for a bandpass filter alone, but this could 
easily lead to unrealistic component value demands upon L2 and C2. In principle, this 
problem can be alleviated by including input and output L-matching networks as shown 
thereby permitting the internal impedance level within the filter to be more arbitrary. Using 
a single resonator along with simple L-match networks limits this topology to relatively 
narrow bandwidth applications. 
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Figure 14 N = 1 bandpass filter with additional input and output L-matching sections 

 Assuming that the source impedance is represented by Rsource and the load 
impedance is represented by Rload in the context of Figure 14, capacitance C1 is based 
upon a simple L-matching section and given by 
 

 1

1
1source

c source internal

R
C

R R
   (21) 

 
where c is the intended radian center frequency for the passband and Rinternal is the 
internal resistance value intended for the filter. The behavior of Rinternal with filter center 
frequency is a key design choice which is discussed later. 
 It is straight forward to show that inductor L1 is given by 
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 Similar results apply to the output L-matching network as 
 

 3

1
1load

c load internal

R
C

R R
   (23) 

 

  

2
3

3 2

3

3

1
load

c load

internal load

R C
L

R C

R R C








 (24) 

 
 
 Assuming that the desired quality factor for the series resonator is represented 
by Qres, the internal resistance level is given by  
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 2c
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L
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Q


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Based upon (22), (24), and (25), the total series inductance is given by 
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In the usual case where Rsource = Rload, (26) can be simplified to 
 

  
2

1internal source res internal
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c internal c

R R Q R
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R 
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 In order to have an implementable tunable filter, only the capacitors in Figure 14 
should be adjustable and the series inductance Lseries should be fixed across the center 
frequency tuning range of interest. Consequently, (27) can be used to determine the 
required behavior for Rinternal in order to keep Lseries a constant. After some algebraic re-
arrangement, (27) can be written as a quadratic in Rinternal as 
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Since the design requires that Lseries be constant across the entire frequency tuning 
range, ideally the derivative of (27) with respect to c should be zero across the tuning 
range of interest. No solution exists, however, unless Rinternal is allowed to change with 
center frequency c. 
 

3.1 A	Design	Example	
 

Assume that the desired center frequency tuning range is 30 MHz to 90 MHz and Qres = 7 
is desired. Under this assumption, choosing Lseries = 533.56 nH produces the computed 
Rinternal from (28) as shown in Figure 17 with the filter schematic as shown in Figure 15. The 
capacitance values versus filter center frequency are given in Figure 16.  
 

shC

serC

shC

534ser nHL 

 
Figure 15 First-order bandpass filter solution where Csh and Cser vary versus filter center 
frequency as shown in Figure 16 
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Figure 16 Csh and Cser for Figure 15 

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

50

 Fit
Ideal Rinternal

Constant-Q Rinternal

Bandpass Center Frequency, MHz

R
es

is
ta

nc
e,

 O
hm

s

 
Figure 17 Constant Qres ( = 7 ) solution to (28) with Lseries = 533.56 nH 

 It turns out that choosing 

  
1.2916

max_

MHz
internal MHz d

MHz

f
R f R

f

 
   

 
 (29) 

 
along with Rd = 36.8 is an almost ideal solution. The difference between the ideal 
value for Rinternal and (29) is plotted in Figure 18. The resultant filter gain characteristics 
versus center frequency are shown in Figure 19 where the constant-Q choice results in 
the filter’s bandwidth increasing with center frequency. 
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Figure 18 Resistance error of (29) with respect to ideal as computed using (28) 
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Figure 19 Filter characteristics for difference center frequencies assuming the design 
details associated with Figure 17 and Figure 18. Ideal components have been assumed.  

3.2 An	Alternative	Configuration‐	Constant	Bandwidth	
 
Motivated by (27), other possibilities for the Rinternal( f ) function can be also considered. In 
the VHF frequency range, the inductor-Q frequently increases with frequency thereby 
making it attractive to consider making the tunable bandpass filter constant-bandwidth in 

nature, rather than constant-Q. Taking this approach, the quantity /c resQ in (27) should 

remain a fixed (radian-) bandwidth represented here by B. Substituting this into (27) 
changes the design equation for Rinternal to 
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2

1internal source internal
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c internal

R R R
L

R B
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which then leads to 
 

 2
2 2 2

2 41 4
02 series source

internal internal series
c c

L R
R R L

B B 
   

       
   

 (31) 

 
Other variations of this approach are of course possible. For example, the filter 

bandwidth could be allowed to increase at some specified rate with increasing center 
frequency and (29) subsequently modified. 

For the constant filter bandwidth case (tuning from 30 MHz through 90 MHz) with a 
fixed filter bandwidth of 5 MHz, the ideal inductor value is about 533 nH and the 
corresponding series and shunt capacitor values given as shown in Figure 21. The 
resultant filter responses versus center frequency are shown in Figure 22 for the ideal 
component case. The circuit topology is identical to that shown in Figure 15 but the tuning 
capacitor values are varied differently with frequency. 
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Figure 20 Ideal Rinternal for a constant filter 
bandwidth of 5 MHz 
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Figure 21 Shunt and series filter capacitances 
associated with Figure 20 

 

0 10 20 30 40 50 60 70 80 90 100 110 120
40

35

30

25

20

15

10

5

0
Constant BW Filters

Frequency, MHz

G
ai

n,
 d

B

 

Figure 22 Constant filter bandwidth characteristics associated with Figure 20 and the 
design approach suggested in this section. Infinite component-Q’s assumed.  
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4 1st‐Order	Step‐Up	Impedance	Configuration	
 

The internal resistance levels shown in Figure 20 are quite low compared to the on-
resistance of FET switches in the case of a design for RFICs. The FET switch resistance 
consequently plays a serious role in dictating the filter insertion loss. The high-impedance 
equivalent to Figure 14 is shown here in Figure 23. This configuration is also attractive in 
that every internal node has intentional shunt-capacitance to ground whereas this is not 
quite as true with the original construct in Figure 14. 
 The RF switches are involved with all of the capacitors of course while the shunt 
inductor (parallel combination of L1, L2, and L3) is fixed. 
 One notable down-side of this configuration is that the impedance level is 
stepped-up around the parallel resonator so the voltage-swing of any in-band signals will 
also be increased. Consequently, the insertion loss of this filter may be lower than that of 
Figure 14 but its 3rd-order intercept point may be poorer than that of Figure 14. The upper 
stopband attenuation will also be poorer due to the input/output capacitive coupling used. 

50  to pZ

Match


Resonator

Parallel

1C
2C

3C

1L 2L 3L

 to 50pZ

Match



 
Figure 23 Dual first-order bandpass filter to Figure 14 

 Based upon calculations quite similar to those used earlier in §3 and §3.2, the 
component values in Figure 23 are given by 
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where the source and load resistances have again been assumed to be equal. The total 
shunt inductance is given by 
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By definition, 
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Putting (34) together with (33) and (35) produces the result 
 



 
Tunable Filters  Step-Up Impedance Configuration 

Copyright © 2017  19 of 34 

 int

2

source

internal sourceernal
p

c res source

res internal source

R

R RR
L

Q R

Q R R









 (36) 

 
After some algebraic manipulation, (36) can be recast as a quadratic in Rinternal as 
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 (37) 

 
It is convenient to parameterize the desired filter-Q as 
 

  
min

res fil

f
Q f Q

f


 

  
 

 (38) 

 
where  = 0 corresponds to a constant-Q filter design and  = 1 corresponds to a 
constant-bandwidth filter design. 
 It turns out that the choice for the total inductance Lp is fairly non-critical. The 
filter’s upper stopband performance is, however, quite poor unless an overly large 
inductance value is assumed (which would lead to other issues). As originally expected 
though, the filter’s insertion loss is driven almost entirely by inductor-Q whereas RF 
switch resistance effects are almost negligible. Filter behavior for a constant-Q and 
constant-bandwidth design are shown in Figure 24 and Figure 25 respectively. 
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Figure 24 Filter design characteristics for a constant-Q 
design ( = 0) assuming RF switch on-resistance of 1, 
minimum inductor-Q of 80, filter-Q of 8, and Lp = 120 nH. 
Although the lower stopband performance is excellent 
because of the input & output capacitive coupling, the 
upper stopband performance is quite poor. 
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Figure 25 Filter design identical to Figure 24 except 
that a constant bandwidth design is employed ( = 1) 
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4.1 Improving	Upper	Stopband	Attenuation	
 
The only way to stay with a single parallel resonator and improve the upper stopband 
performance markedly is to alternate the impedance-matching type between the input 
and output as shown in Figure 26. 
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3L

 to 50pZ

Match



 
Figure 26 Single parallel resonator with alternating highpass / lowpass input/output 
impedance matching 

Since all of the inductors must be fixed values (including L3), inductor L3 sets the internal 
resistance level for the filter. Inductor L3 must be selected such that the parallel 
combination of L1 and L2 remains constant over the tuning range of interest. 
 Given a value for L3, 
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and 
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Given Rinternal from (39), values for C1 and L1 are determined in the same way as done 
earlier as 
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Resonator values are straight forward as 
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The parallel combination of L1 and L2, denoted here by Lp, must be constant as stated 
earlier where 

 1 2

1 2
p

L L
L

L L
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
 (44) 

 
Using (42) and (43) in (44) produces 
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 (45) 

 
Equation (38) can be used for the resonator’s Q value once again. 
 The design proceeds by first picking a value for L3 which minimizes the variance 
of Lp over the desired tuning range for the filter. For the case where Qfil and  equal 5 and 
0.75 respectively in (38) with a filter tuning range of 30 MHz to 90 MHz, an optimal value 
for L3 is about 540 nH as shown in Figure 27. 
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Figure 27 Brute-force optimization for inductor L3 

 The other component values are computed using the previous equations while 
assuming L3 = 540 nH. The resultant filter gain characteristics at multiples of 10 MHz are 
shown in Figure 29. Insertion loss is quite reasonable even with RF switch on-resistance 
and finite inductor-Q included. 
 If the  value is changed, the optimum value for L3 also changes. Optimum 
values are 360 nH and 250 nH for  values of 0.50 and 0.25 respectively. Filter gain 
characteristics for these two cases are shown in Figure 30 and Figure 31. The filter 
topology is the same for all of these cases as given in Figure 28. Depending upon the 
case, the tuning capacitances Cser and Csh are adjusted versus frequency as shown in 
Figure 32, Figure 33, and Figure 34. 
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Figure 28 Filter topology for this group of solutions 
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Figure 29 Filter gain characteristics assuming a nominal inductor-Q of 80,  = 0.75, and 
RF switch on-resistance of 1. Optimum value for Lser = L3 is about 540 nH and Lsh = 
185.6 nH. See Figure 32 for tuning capacitance values versus filter center frequency. 
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Figure 30 Filter gain characteristics assuming a nominal inductor-Q of 80,  = 0.50, and 
RF switch on-resistance of 1. Optimum value for Lser = L3 is about 360 nH and Lsh = 
111.7 nH. See Figure 33 for tuning capacitance values versus filter center frequency. 
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Figure 31 Filter gain characteristics assuming a nominal inductor-Q of 80,  = 0.25, and 
RF switch on-resistance of 1. Optimum value for Lser = L3 is about 250 nH and Lsh = 
122.6 nH.  
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Figure 32 Tuning capacitance values versus filter center frequency pertaining to Figure 
28 and Figure 29 
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Figure 33 Tuning capacitance values versus filter center frequency pertaining to Figure 
28 and Figure 30 
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Figure 34 Tuning capacitance values versus filter center frequency pertaining to Figure 
28 and Figure 31 
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5 1st‐Order	Step‐Down	Configuration	Revisited	
 

The original step-down filter configuration discussed in §3 used the same style of 
lowpass matching sections at the input and the output. In this section, a highpass 
matching section is used at the output port instead as shown in Figure 35. Once again, 
fixed inductor L3 determines the behavior of Rinternal versus the filter’s center frequency. 

 
Figure 35 Step-down filter configuration with a highpass matching section at the output 
port 

The filter’s internal resistance level is given by 
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The other design equations are 
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and 

 

1 1

2

internal source

res internal

c

L R R C

Q R
L






 (48) 

 

For proper filter performance, L3 needs to be selected such that 1 2pL L L   is as 

constant across the intended center-frequency tuning range as possible.  
 Choosing Qfil = 8 and  = 0.75 in (38) and L3 = 380 nH results in the filter 
behavior shown in Figure 36 using the tuning capacitor values shown in Figure 37. 
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Figure 36 Filter gain characteristics assuming a nominal inductor-Q of 80, Qfil = 8,  = 
0.75, and RF switch on-resistance of 1. Optimum value for L3 is about 380 nH. The 
filter’s insertion loss is unexpectedly low and stopband performance very good on both 
sides. 
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Figure 37 Tuning capacitor values for Figure 36 
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6 Summary	of	1st‐Order	Bandpass	Filter	Design	
 

A variety of filter configurations have been considered, both in topology as well as 
variants spanning from constant-Q to constant-bandwidth filters using parameter . The 
different filter cases considered are summarized in Table 3.  
 
Table 3 Summary of 1st-Order Bandpass Filters Considered 

Figure Input 
Match 

Output 
Match 

Resonator Behavior General Performance 

Figure 14 LP LP Series Constant-Q  
Figure 22 “ “ “ Constant-

BW 
 

Figure 24 HP HP Parallel Constant-Q Poor 
Figure 25 “ “ “ Constant-

BW 
Poor 

Figure 29 –  
Figure 31 

HP LP “ Adjustable Good 

Figure 36 LP HP Series Adjustable Good 
 
Summary points: 
 

 Making use of alternative Rinternal functions as done in §3.2 is very attractive for 
having tighter bandwidth control versus tuned center frequency. 

 The filter design discussed in §0 does entail one additional inductor, but the 
nearly symmetric upper and lower stopband attenuation performance is most 
appealing. 

 The last filter topology visited in §5 exhibits an unexpected low insertion loss 
along with a very good bandpass characteristic and therefore deserves additional 
consideration. 

 Keeping the number of transmission zeros at zero frequency and  frequency 
balanced helps to preserve good overall stopband performance. 
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7 A	Real	World	Design	Example	
 

The preceding design approaches leave many options on the table, even for a first-order 
bandpass filter! Aside from the more obvious cases like Figure 24 in §4 where the upper 
stopband is more or less lost, a number of the results look fairly attractive for real-world 
use. 
 In general, it is difficult to uniformly obtain more than 20 dB of 2nd harmonic 
suppression over an octave tuning range without the filter insertion loss becoming 
excessive. If the objective is more on the order of 40 dB of suppression, a cascade of 1st 
order sections or the N = 2 filters discussed in Part II will be a much better choice. 
 To illustrate a real world design example more fully, the results shown in Figure 
29 and Figure 32 will be looked at in greater detail here. This filter design provides 
between roughly 15 dB and 22 dB of 2nd harmonic suppression with good stopband 
symmetry. The insertion loss shown is due entirely to inductor-Q and assumed varactor-
Q or switch-related losses. 
 Assume that a tunable filter is required to cover from 100 MHz through 200 MHz 
and it is determined that a filter-Q of 5 at 100 MHz provides sufficient selectivity. The 
choice for  is 0.75. The optimum shunt inductance value is given by (45) as about 28.7 
nH whereas the optimal choice for Lser is about 200 nH. Given these choices, the Cser and 
Csh capacitance values should be varied with filter center frequency as shown in Figure 
39. The resultant frequency response is shown in Figure 40. 
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Figure 38 Filter topology for this example 
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Figure 39 Optimal values for tuning capacitors in Figure 38 
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Figure 40 Associated frequency response for several filter center frequencies situated 
between 100 MHz and 200 MHz 

 For the tunable capacitors, it is generally easier to use varactor diodes than to 
use a bank of switched capacitors. Finding RF switches with sufficiently low on-
resistance can be a challenging issue, or PIN diodes can be used if the high current drain 
involved can be tolerated.  
 If varactors are used for the tunable capacitances, it is always best to use 
combinations of back-to-back varactors because this substantially improves linearity. 
Using series and parallel combinations of such varactor-pairs can be helpful for realizing 
a wide range of capacitance values while only requiring one varactor type as suggested 
in Table 4. 
 
Table 4 Example series and parallel combinations of varactor diodes 

 
 

 

 
 For a prototype filter, BB207 common-cathode varactors are readily available. A 
single varactor is adjustable from about 17 pF to 80 pF using a bias voltage from 15V 
down to 1V. Tuning at the upper-end of the tuning range may be somewhat 
compromised, but certainly adequate for a first prototype investigation. The more detailed 
filter schematic is shown in Figure 41. 
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Figure 41 Detailed schematic for the 100 MHz to 200 MHz tunable 1st-order bandpass 
filter 

7.1 Filter	Alignment	Possibilities	
 

A variety of means can be used to align the filter across frequency when varactor tuning 
is assumed. The first means is to simply build a table of values in which Csh is stepped by 
adjusting and Cser is varied at each step (by adjusting Vseries) to minimize the insertion 
loss. Since both adjustable capacitance values affect the center frequency, the third entry 
in the table is the resultant center frequency once the insertion loss has been minimized 
by adjusting Vseries. This table can be used to interpolate the required tuning voltages for 
any center frequency across the band.  
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8 Filter	Analysis	Method	
 
A wide range of different software tools could be used to analyze the different filter 
schematics presented in this paper. The adopted approach, however, is based upon 
ABCD matrices [2] using MATLAB. A basic ABCD linear system is shown in Figure 42 
with 

A B

C D

 
 
 1V 2V

1I 2I

 
Figure 42 ABCD matrix definition 

 
1 2 2

1 2 2

V AV BI

I CV DI

 
 

 (49) 

 
This arrangement makes it very easy to cascade circuit elements which can be drawn in 
a ladder arrangement. The ABCD matrix for a shunt admittance and a series impedance 
are shown in Figure 43. 

 
Figure 43 ABCD matrices for shunt and series elements 

 
The input impedance associated with (49) when the load is a simple resistance Rload is 
given by 
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Similarly, the output to input voltage gain is given by 
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 The filter configuration shown in Figure 28 is repeated here switched-capacitor 
switch resistances and finite inductor-Q in Figure 44. The ABCD matrix cascade for this 
schematic is given by 
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loadR
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shC
shL

serL
swR

swR

 
Figure 44 Filter schematic of Figure 28 including capacitor-switch resistances along with 
source and load resistances 
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 (52) 

 

where s is the normal Heaviside operator and 1j   . Note that finite inductor-Q has 

been included by way of Qind. 
 To analyze the filter described by (52), all of the inductance values remain 
constant. Values for Cser and Csh are determined based upon the desired center 
frequency of the filter using (41) for Cser and the sum of (43) and (40) for Csh. The 
frequency response of the filter is obtained by computing the ABCD matrix (52) at each 
sweep-frequency of interest and using (53) to compute the (complex) input reflection 
coefficient S11 and using (54) to compute the power-gain S21. 
 

 11
load source load sourceAR B CR R DR

S
d

  
  (53) 

 21

2 source loadR R
S

d
  (54) 

 load source load sourced AR B CR R DR     (55) 
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9 Looking	Ahead	
 
Generally speaking, filter passband flatness dictates that the filter order necessarily be 
increased to at least two. In Part II of this series, details will be presented for nearly 
symmetric wide-tuning range 2nd-order LC bandpass filters. Well behaved tuning ranges 
in excess of an octave can be achieved.  

 

Figure 45 Tunable filter frequency response for different center frequencies for 2nd-order 
LC bandpass filters 
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