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1 Introduction 
Aside from the basic trigonometric and logarithm 

functions, the square-root (SQRT) function is one of 
the first functions that we encounter in school that 
forces us to deal with irrational numbers. As a student 
of computation, greater insight into mathematics can 
be had by knowing more about what is behind the √x 
function on a $7.99 Casio calculator. This 
memorandum takes a brief look at methods for 
calculating the square root of a positive real value. 

One of the primary motivations for studying the 
square root function here is to uncover methods that 
can be easily implemented in semi-custom VLSI 
circuitry. For simplicity sake, attention within this paper 
will be limited to base-10 floating-point numbers even 
though VLSI implementations are normally binary in 
nature. Some computational techniques are better 
suited to the base-2 number system than others, but 
we defer such considerations to other texts that deal 
with this subject in depth. 

The square root computational methods that will 
be examined are: 

 
Sums of odd integers 
Continued fractions 
Long-hand division 
Newton’s type-1 
 Double-step Newton’s type-1 
Newton’s type-2 
Secant 
Muir’s 
Ladder (Theon) 
Taylor series 
 Chebyshev economized series 
Rational series 
Cordic 
Bisection 

2 A Touch of History 
It is always valuable to have some awareness of 

history when it comes to long-standing concepts such 
as the square root. 
 "It1 would seem that [Archimedes] had some 
                                                      
1 W.W Rouse Ball, Short Account of The History of 
Mathematics, 1908 

(at present unknown) method of extracting the square 
root of numbers approximately." "His 2  method for 
computing square roots was similar to that used by the 
Babylonians." One of the Babylonian methods3 used 
was essentially the same as the method known as 
“Newton’s Method” in more modern times, and we will 
examine this technique in Section 4.2. A second 
method attributed to the Babylonians is known as the 
“ladder method” and we will examine that method in 
Section 4.6. 
 In the first century AD, the Greek 
mathematician Heron of Alexandria also made use4 of 
Newton’s Method for computing square roots. There 
can be no question but that the ancient Pythagoreans 
were keenly aware of square roots since 
 

(1) 2 2c a b= +  

in which a,b, and c are the sides of the right-triangle 
shown in Figure 1. 
 
Figure 1 Basic Right-Triangle Used for 
Pythagorean Theorem 

a

b
c

 
One of the very first electronic computers in 

the world named the ENIAC used the “sum of odd 
integers” method to compute5 square root as described 
in Section 3.1. Numbers with a fractional portion were 
simply pre-multiplied by an even power of 10 in order 
to circumvent the technique’s limitation to purely 
integer values. 

A brief search of the Internet reveals that many 
societies like India and China also have a rich history 
of computation regarding the square root function, and 
interested readers are encouraged to utilize that 
resource to do their own research on this topic. 

 
 

                                                      
2 C. B. Boyer, A History of Mathematics, 1968 
3  “Archimedes and the Square Root of 3”, 
http://www.mathpages.com/home/kmath038.htm  
4  http://www.merriampark.com/bigsqrt.htm  
5  
http://www4.wittenberg.edu/academics/mathcomp/bjsdi
r/ENIACSquareRoot.htm  
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3 Interesting Facts 
Before we jump into serious computation of the 

SQRT function, it is interesting to look at a few 
examples that surprisingly pertain to square roots. 
 

3.1 Sums of Odd Integers 
The sum of the first N odd integers produces a 

sum equal to N2. On the surface, this is a very 
surprising result but nevertheless true. The first few 
cases of 

 

(2) ( ) 2

1

2 1
N

ii

ii N
=

− =∑  

follow as shown below: 
 

1 + 3 = 4 
1 + 3 + 5 = 9 
1 + 3 + 5 + 7 = 16 
1 + 3 + 5 + 7 + 9 = 25 
 
The underlying mathematics responsible for 

this result6 is based upon the simple arithmetic series 
result in which 

 

(3) ( ) ( )
1

1
2

N

n

N
a nd Na N d

=
+ = + +∑  

Selecting a= -1 and d=2 provides the result given by 
(2). Although this result does not directly lend itself to 
an algorithm for computing non-integer square roots, it 
is still an intriguing result, and as noted in Section 2, it 
was the basis for computing square roots in the ENIAC 
computer. 
 

3.2 Continued Fractions 
A second interesting result7 for the square root 

of a value A is provided by the continued fraction form 
where √A = 1 + r in which 

(4) 
1

1
1

1
...

r
A

A
A

A

=
+

+
+

+

 

 

                                                      
6  [1], page 30 
7  [2], page 104 

In the case of A = 2, this formula converges to within 2 
10-9 after 10 iterations. 
 Another simple recursion for the square root 
can be found by starting with the identify 
 

(5) ( )21 x A+ =  

Upon expanding this out we obtain 
 
(6) ( )2 1x x A+ = −  

If we “boldly” assume that we can divide the right-hand 
side by (2+x) in order to refine our estimate for x, we 
obtain the recursion 
 

(7) 1

1
2i

i

A
x

x+
−=

+
 

and upon repeated application of this recursion, we 
can formulate the continued fraction expression given 
by 
 

(8) 
1

1
2

1
2

1
2

1
2

1
2

2 ...

A
x

A
A

A
A

A

−= −+ −+ −+ −+ −+
+

 

with the final result given as √A= 1 + x. 
This ad-hoc recursion is interesting, but the 

heavy reliance upon division makes it fairly unattractive 
for square root computation because it converges 
rather slowly as shown in Figure 2 and Figure 3. 
 It is also fun to note that if we had started with 
a slightly different identity of 
 

(9) 
2

1
2

x A + =  
 

the appropriate recursion would have been 
 

(10) 1

1
4

1i
i

A
x

x+

−
=

+
 

and the final root given by √A= x + 0.50. 
It is very interesting that this simple continued 

fraction method works as well as it does, and it seems 
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plausible that other forms are also possible. 
 

Figure 2 Convergence of Continued Fraction 
Method (8) Versus A and Number of Iterations 
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Figure 3 Convergence Range for Continued 
Fraction Method 8) 
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4 Computational Methods for 
Square Root 
A wide range of computational methods for SQRT 

are provided in the sections that follow. Non-rigorous8 
attention is also provided to the convergence question 
for each method as well.  
 

4.1 Long-Hand Grade School 
Method 
Most of us learned a long-hand method for 

computing the square root function at one point or 
another in school, but with little or no explanation for 
why the method worked. The method shares many 
visual similarities with long-hand division. First we will 
present the method, and then justification will be 
provided for why this method works. 

 

4.1.1 Long-Hand SQRT Method9 
Assume that we wish to compute the square 

root of a positive base-10 value represented by 
n1n2n3.n4n5n6 where each ni represents an integer 
between 0 and 9. For the case where a= 652.341, n2= 
5 for example.  

The long-hand method consists of the following 
steps: 
 
• Step 1: Group the number in "twos" from the 

decimal place. (If you have a number with an odd 
number of digits, the group to the far left will only 
be a group of 1 digit.) 

• Step 2: Start with the first group of two (the group 
on the left). This group may be a group of only one 
number if your number has an odd number of digits. 
Find the greatest square less than or equal to that 
group of digits and its square root will be your first 
approximation of the entire square root. 

• Step 3: Subtract the current approximation squared 
and bring down the next group of numbers behind 
it. This is your next number to work with. 

• Step 4: Double the current approximation of the 
root. 

• Step 5: Find the "ones" digit of the doubled number 
that would result in a number which divides into the 
number you are currently working with- with the 
smallest possible remainder. This is the next 
number in your approximation of the square root. 

                                                      
8  See Section 3.2 of [6] for additional discussion 
9  
http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Ch
allen/squareroot/sqrt.html  
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• Step 6: Multiply the "ones" digit by the doubled 
number plus the "ones" digit. Subtract this number 
from the number you are currently working with 
and bring down the next group of numbers behind 
it. This is your next group of numbers to work with. 

• Step 7: Repeat steps 4 through 6 until you get an 
approximation with an acceptable number of 
significant digits. 

 
In the case where a= 652.341, the first several steps of 
this method are shown in Figure 4 through Figure 7. 
The iterations are continued until sufficient accuracy is 
obtained. At any given iteration, the “quotient” obtained 
when squared will always be < A because this method 
provides a truncated result for √A rather than a 
rounded one. 
 
Figure 4 Grouping of Integers and First Iteration 
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Figure 5 Second Iteration 
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Figure 6 Third Iteration 

6 52.34 10 00 00
4
252

2  5 . x

45
225

27  3450x
 

 
Figure 7 Fourth Iteration 
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4.1.2 Justification for Long-Hand 
SQRT Method10 
The square root of a number A is the number 

M, so that M2 = A. The square root algorithm is set up 
so that we take the square root of a number in the form 
of (X + R)2. The square root of this number is obviously 
(X + R). X represents the current approximation for the 
square root, and R represents the remainder of the 
number left over from the approximation. Our 
approximation will always be the correct square root of 
the number truncated (not rounded) to the number of 
digits in our approximation. If we expand our number 
(X + R)2 it will equal X2 + 2RX + R2. This gives us the 
basis for our derivation of the square root algorithm. 

Step 1: The square root of a number between 
1 and 100 is a number between 1 and 10. Furthermore, 
the square root of a number between 100 and 10000 is 
a number between 10 and 100, and so on. Therefore, if 
a number is divided into groups of two digits each from 
the decimal point to the left, the number of digits in the 
integer part of the square root of that number will be 
equal to the number of groups of figures. 

Step 2: Only the first group of two (or one) 
digits determine the first digit of the square root. If the 
first two (or one) digits are a perfect square, then there 
is nothing left over and the process can be repeated on 
the next two digits of the number. This is usually not 
the case, which means there is a part of the first two 
(or one) digits which has not been accounted for and 
our approximation is not perfect. This leads into Step 3. 

Step 3: Take the expanded value of our 
number: X2 + 2RX + R2. We subtract off the current 
approximation, X2, which results in 2RX + R2, the part 
of the original number which is not accounted for in our 
approximation. This gives us our next value to work 
with. 

Step 4: Rewriting 2RX + R2 gives us R(2X + R). 
We see that our current approximation, X, must be 
doubled, resulting in 2X, which are the first digits of the 
number we will be working with. 

Step 5: In order to find the next approximation, 
we need the R value. This number must divide into the 
next grouping with the smallest remainder, as shown 
by R(2X + R). (R obviously divides this number.) 

Step 6: Since you've found an approximation 
based on this number, you must subtract of R(2X + R) 
so you take into account any remainder from your 
previous group of numbers. 

Step 7: The procedure can be repeated as 
many times as necessary until either no remainder is 
found, meaning you have the actual square root, or 
until an acceptable number of decimal places are 
estimated. 
 Given a little practice, long-hand computation 

                                                      
10  Ibid. 
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of a square root will be as natural as long-hand division. 
 

4.2 Newton’s Method- Type I 
We will look at Newton’s Method first because it 

was referenced first in the context of Babylonian 
mathematics in Section 2. It is unknown what process 
the Babylonians followed to come up with this powerful 
computational method. 

We will look at two different paths to arrive at the 
same Newton’s Method formula, and will call them (a) 
the polynomial method and (b) the derivative method. 

 

4.2.1 Polynomial Method 
The polynomial method will be most comfortable 

with those who prefer a non-calculus approach to the 
formula.  

Assume that we wish to compute the SQRT of 
the quantity A, and that we start with an initial guess 
for the solution of x0. It turns out that the initial guess 
can be any positive real number although a better 
initial guess will lead to faster convergence. Since x0  is 
an initial guess, the true square root value can be 
represented by √A = x0 + δ. Using this simple starting 
point, we can write 

 

(11) ( )2
0x Aδ+ =  

Expanding the binomial leads to 
 
(12) 2 2

0 02x x Aδ δ+ + =  

We now make the “bold” assumption that |2x0δ| >> δ2 
and we can therefore drop this second-order term and 
approximate δ as 
 

(13) 
2
0

02
a x

x
δ −≈  

It is a simple matter to use this estimate for δ to form a 
new estimate for √A as x1 = x0 + δ, and this process 
can be repeated as many times as desired. The 
recursive formula for x is given by 
 

(14) 1

1
2i i

i

A
x x

x+

 
= + 

 
 

This result is known as “Newton’s Method” for 
computing SQRT. We note that it is very simple to use 
this same approach for the nth root of the value A by 

simply starting with a nth order polynomial in (11) and 
following through the same steps leading to the 
recursive formula 

 

(15) 
( )

1 1

1 n
i

i n
i

n x A
x

nx+ −

− +
=  

4.2.2 Derivative Method 
The derivative method makes direct use of the 

Newton-Raphson formula11  to compute the recursive 
square root formula given by (14). For a function F(x), 
the recursive formula for the solution of F(x)= 0 takes 
the form 

 

(16) 
( )
( )1

i
i i

i

F x
x x

F x+ = −
′

 

in which the prime indicates differentiation. For F(x)= x2 
– A, the derivative is simply given by F’(x)= 2x and 
upon substitution into (16), we obtain the desired result 
identical with (14). 
 

4.2.3 Convergence Properties of 
Newton’s Method 
A non-rigorous proof that (14) always 

converges to the correct answer can be obtained by 
computing the ratio between successive estimates for 
xi as 
 

(17) 1
2

1
1

2
i

i
i i

x A
x x

γ+  
= + = 

 
 

Inspection of this ratio shows that γ is a strictly positive 
quantity and 
 

(18) 
2

2

1:

1:
i

i

i

x A

x A
γ

> <= 
< >

 

which guarantees convergence. The normalized error 
versus iteration index and normalized initial estimate is 
shown in Figure 8 for several different cases. Two 
distinct convergence rates are self-evident; the first 
corresponds to a geometric error reduction rate for 
which the error is reduced by approximately a factor of 
2 for each iteration, and a second error reduction rate 
corresponding to a quadratic convergence rate once 

                                                      
11  [3], pages 657-9 
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the root estimate is reasonably close to the true value. 
Aside from possibly the first iteration step, the error 
reduces monotonically for each iteration. 

4.2.4 Double-Steps with Newton Type I 
Most of the recursion formulas presented in this 

paper can be algebraically re-organized to do two or 
more iterations in just one step. This is particularly 
attractive to do if multiplications are relatively 
inexpensive to perform whereas division operations are 
not.  

For example, if (14) is applied two times in a row, 
the recurrence relationship that results is 

 

(19) ( )
4 2 2

1 2

21
4

i i
i

i i

x Ax A
x

x x A+
+ +=

+
 

More multiplications are involved even if synthetic 
division methods are used, but only one division is 
required per iteration and the convergence rate per 
iteration is effectively doubled. 
 If the original recursion (14) is applied three 
times in a row, the recurrence relationship that results 
is 
 

(20) 
( ) ( )

( )( )

2 24 2 2 2 2

1
5 3 2 2

1
6

16
1

6
2

i i i i

i

i i i i

x ax a ax x a
x

x ax a x x a
+

+ + + +
=

+ + +
 

Additional re-organization can make this result more 
attractive for actual hardware implementation. This 
construction technique can be used to create rational 
approximations for the square root that involve only 
one division step as shown. 
 

4.3 Newton’s Method- Type II 
Newton’s method can be used with an 

alternative problem formulation to arrive at a recursive 
formula similar to (14) that does not require division. 
Although this aspect is very attractive, the convergence 
range of this method is limited. 

In this approach, the function that is to be solved 
is given by 

 

(21) ( ) 2

1
F u A

u
= −  

Once the value of u is found in (21), the square root 
can be computed as x = A u. This method is attractive 
because it does not require any explicit division 

operations, but the range of convergence is limited as 
discussed in Section 4.3.2. 
 
Figure 8 Normalized Error Versus Iteration Number 
and Initial Normalized Initial Guess 
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4.3.1 Derivation of the Type II Method 
Beginning with (21) and making use of the first 

term in its Taylor series expansion, we can write 
 

(22) ( ) 2 3

1 2
0F u A

u u
δ δ + = − + =  

 

Solving this equation for δ, we find that 

(23) 
3 3

2

1
2 2 2
u u A u

A
u

δ  = − = −  
 

from which a refined value for u can be written as 
 

(24) ( )
3

23
2 2 2
u A u u

u u A u′ = + − = −  

This formula can be applied recursively until the 
desired degree of precision is achieved. 

4.3.2 Type II Method Convergence 
The initial solution estimate for u must be 

constrained as mentioned earlier in order to guarantee 
that this method properly converges. If we look at the 
ratio of ui+1 to ui by using (24), we easily find that this 
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ratio is given by 
 

(25) ( )21 1
3

2
i

i
i

u
A u

u
γ += = −  

It turns out that sufficient conditions to insure proper 
convergence are that (a) u0 > 0 and (b) u0 < √(3/A) in 
order to insure that γi > 0 is always true. Choosing u0 
extremely small is one way to insure that convergence 
is achieved, but this also leads to a large number of 
iterations being required in order to obtain good 
precision. A better alternative is to adopt a crude initial 
 
Figure 9 Convergence Error Behavior of Type II 
Method Versus Initial Estimate and Iteration Index 
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estimator for u0 such that u0 strictly less than √(3/A) is 
achieved but also insures that u0 is not overly small 
compared to the end-solution. In the case of using 10 
iterations, a uniformly good initial estimate for u0 given 
by 1.64/A delivers 15-place decimal accuracy for 1 ≤ A 
≤ 100. Different initial estimates can be easily 
determined for other ranges of A and the number of 
iterations employed. 
 Figure 9 also shows different rates of 
convergence depending upon the quality of the initial 
estimate used. The initial convergence rate is not 
geometric as for the Type I Newton’s Method, but it 
does become quadratic once the estimation error 
becomes sufficiently small. 

4.4 Secant Method 
The Secant Method12  is closely related to the 

Newton-Raphson method that was used in Section 
4.2.2. Rather than employ the exact derivative of F(x), 
the derivative is approximated at each iteration step as 

 

(26) ( ) ( ) ( )1

1

i i
i

i i

F x F x
F x

x x
−

−

−
′ ≈

−
 

In the case where F(x) = x2 – A, this leads to the 
recursive formula 
 

(27) 1
1

1

i i
i

i i

A x x
x

x x
−

+
−

+=
+

 

Since this recursive formula involves a multiplication as 
well as a division, its utility compared to the exact 
formula given by (14) is questionable. 
 

4.4.1 Convergence Behavior of Secant 
Method 
The convergence behavior of the Secant 

Method is very similar to that of the Type I Newton’s 
Method because they start from the same conceptual 
perspective. The algorithm’s convergence properties 
versus iteration number and initial estimate are shown 
in Figure 10. Since two initial values for x are required 
in the Secant Method, it can be assumed that both x0 
and x1 are set equal to the same initial estimate. 

The ratio of xi+1 to xi is easily found to be 
 

(28) 1 1
22

1

1

1

1

i i i i

ii i i

i i

A
A x x x x

xx x x
x x

γ − −

−

−

+
+= =
+ +

 

If we now assume that the error at iteration n is given 
by 
 
(29) 2

n nA x∆ = −  

and substitute back into (28), we can show that when 
xixi-1 << A that γ → A /(A-∆) which is a potentially large 
but always positive quantity (since ∆ < A), and when 
xixi-1 >> A that γ → 1/[ 1 + (A-∆)/(xixi-1) ] which tends 

                                                      
12  
http://sepwww.stanford.edu/oldsep/sergey/sepsergey/s
pecfac/paper_html/node3.html  
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toward the value of ½ just as for the Type I Newton’s 
Method. Consequently, the initial convergence can be 
more erratic for the Secant Method than for the Type I 
Newton’s Method, but convergence eventually occurs 
regardless. 
Figure 10 Convergence Behavior of Secant Method 
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4.5 Muir’s Method13 
This method is a rather obscure method that is 

based upon choosing a special function for F(x). The 
recursion formula is attractive in that it does not require 
any multiplications to be performed, but a division step 
is required for each iteration. The recursion is given by 

 

(30) 1 1
i

i
i

x A
x

x+
+=
+

 

The special function used for Muir’s Method is 
 

(31) ( )
1 1

2 2
A A

A AF x x A x A
− +

= + −  

4.5.1 Convergence Behavior of Muir’s 
Method 
The convergence rate of Muir’s Method is 

substantially slower than the previous methods that 
have been examined thus far, and it is primarily due to 
                                                      
13 
http://sepwww.stanford.edu/oldsep/sergey/sepsergey/s
pecfac/paper_html/node3.html  
 

the denominator construction shown in (30). The 
convergence is shown for several initial estimate cases 
in Figure 11. 

It is insightful to examine the ratio xi+1 to xi as 
we have done with the previous methods resulting in  

(32) 

1

1
i

i

A
x
x

γ
+

=
+

 

So long as x0 > 0 is used, this ratio remains positive as 
desired. For A and xi both >> 1, γ → A/xi

2 which is 
properly larger than unity when the root estimate is too 
small, and smaller than unity when the estimate is too 
large. In situations where xi << 1, γ → 1 + A/xi which 
can be quite large (but always positive). The constant 1 
factors in (32) lead to a different error behavior versus 
iteration index than seen thus far as shown in Figure 
12. 
 
Figure 11 Convergence Behavior for Muir’s Method 
Versus Iteration Index and Initial Estimate 
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4.6 Ladder Method (Theon’s) 
One of the most attractive features of this 

method is that it only depends upon the addition and 
subtraction of integers until the last step at which time 
a final ratio is computed. 

“It14 seems plausible that the Greeks may have 
proceeded as follows: The square root of A can be 
broken into an integer part and a remainder, i.e., 

                                                      
14  “Archimedes and the Square Root of 3”, 
http://www.mathpages.com/home/kmath038.htm  
Theon of Smyrna, circa 140 AD 
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sqrt(A) = N + r where N is the largest integer such that 
N2 is less than A. The value of r can be approximated 
to any desired degree of precision using only integer 
additions and multiplications based on the recurrence 
formula 

 

(33) ( )2
1 22i i is Ns A N s− −= + −  

Figure 12 Convergence Error for Muir’s Method 
Showing Oscillatory Behavior 
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It’s easy to see that the value of (A-N2)( si / si+1 ) 
approaches r as n goes to infinity.  This is a form of the 
so-called "ladder arithmetic", of which some examples 
from ancient Babylonia have survived.” 
 A plausible explanation for this recursion 
formula can be obtained by dividing both sides of (33) 
by si-1 which produces 
 

(34) ( )2 2

1 1

2i i

i i

s s
N A N

s s
−

− −

= + −  

If we identify the quantity 
 

(35) ( )2 2
1

1

i
i

i

s
r A N

s
−

−
−

= −  

then we can re-write (34) as 
 

(36) 
2

12 i
i

A N
N r

r −
− = +  

and upon removing the denominator ri, this becomes 
 
(37) 2

1 2i i ir r Nr N A− + + =  

In the limit as i → ∞, ri = ri-1 = r and (37) takes the form 

of a perfect square as (N+r)2 = A. 
 Although N is to be chosen as the largest 
integer such that N2 ≤ A, it turns out that the recursion 
formula converges for other values of N albeit less 
quickly, but it nonetheless converges. This is due to 
the definition of r being proportional to the error (A-N2) 
which can be positive or negative. 

As an example, to find sqrt(3) we have A=3 
and N=1, so the recurrence formula is simply si= 2si-1 + 
2si-2 with s0 = 0 and s1 = 1, and the subsequent values 
in the sequence are 
 

 2, 6, 16, 44, 120, 328, 896, 2448, 6688, 18272, 
49920,... 

 
Using the last two results in the series, r= (3-1)(18272 / 
49920)= 0.732051282 making the estimate for the root 
equal to 1 + r = 1.732051282 which is accurate to 
within 0.5 10-6.  
 Reference [7] provides a slightly different 
recursion formula for the ladder that supports the 
finding of any root, and it is given by 
 

(38) ( )
1 1

11
i i i

i i i

x x y

y x A x
− −

−

= +
= + −

 

with the starting “rungs” being x0= y0 = 1. In this 
formulation, it is further assumed that A > 1. This 
recursion results in the following sets of value for the 
A=3 case: 
 
Table 1 Theon’s Ladder Construction from [7] 

xi yi yi/xi 
1 1 1 
2 4 2 
6 10 1.66666666666666 
16 28 1.75 
44 76 1.72727272727272 
120 208 1.73333333333333 
328 568 1.7317007317… 
896 1552 1.732142857… 
2448 4240 1.732026144… 
6688 11584 1.732057416… 
18272 31648 1.732049037… 
   
 Exact 1.732050808… 
 

4.6.1 Convergence of Ladder Method 
If we initially assume that the limit limn→∞ yn/xn 

exists as done in [7], the ratio yn/xn can be written as 
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(39) 
( ) 1

1 1

1i ii

i i i

x A xy
x x y

−

− −

+ −
=

+
  

By further dividing the numerator and denominator of 
the right-hand side by xi-1 we obtain 
 

(40) 

( )
1

1

1

1

1

i

i i

ii

i

x
A

y x
yx
x

−

−

−

+ −
=

+
 

From (38) we can express xi in (40) in terms of xi-1 and 
yi-1 which leads to 
 

(41) 

1

1

1

1

11

i

i i

ii

i

y
A

y x A r
yx r
x

−

−

−

−

+
+= =
++

 

where r= lim i  → ∞ yi  / xi. This is equivalent in the limit to 
writing r = ( A+r ) / ( 1 + A ) which reduces to r2 = A. 
 Convergence of the recursion (38) for √2 and 
√7 are shown in Figure 13 and Figure 14 respectively. 
Since x0= y0= 1 in both cases, convergence for √7 is 
less rapid as shown. 
 
Figure 13 Convergence of (38) for �2 
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4.7 Series Expansions 
It is only natural that we examine what series 

expansions are available for the square root 
computation. The expansions that we will look at in this 
section encompass the Taylor, Chebyshev,  and 
rational varieties. 

 

4.7.1 Taylor Series 
The Taylor series expansion for √(1+a) is 

given15 by 
 

(42) 

2 3 4

5 6 7

5
1 1

2 8 16 128
7 105 165

...
256 5120 10240

a a a a
a

a a a

+ = + − + − +

− + +
 

This type of formula must be used with a limited range 
for parameter a that is based upon the accuracy 
desired and the number of terms used in the series. 
Normally, |a| < 0.50 is recommended for reasonable 
performance. 
 
Figure 14 Convergence of (38) for �7 
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4.7.2 Chebyshev Series 
The Taylor series of the previous section can 

be made much more computationally efficient by 
“economizing” the series expansion 16  by using 
Chebyshev-based polynomials. The recursive 
relationship for the polynomials is given by T0(x)= 1, 
T1(x)= x, and Tn+1(x)= 2Tn(x) – Tn-1(x). The first few 
such Chebyshev polynomials are 

 

                                                      
15 [1] page 40 
16 [8] Section 10.4 



AM1 LLC U11891  11 

1 June 2005 U11891 Computing Sqrt.doc Version 1.0 
 �2005 J.A. Crawford 

(43) 

( )
( )
( )
( )
( )

0

1

2
2

3
3

4 2
4

1

2 1

4 3

8 8 1

T x

T x x

T x x

T x x x

T x x x

=

=

= −

= −

= − +

 

These Chebyshev polynomials can be rearranged to 
express different powers of x as given by (44).  

The economization is done by starting with a 
Taylor series expansion that achieves the desired 
accuracy over a specified parameter range of [-α, +α]. 
Each power of x in the Taylor series is then replaced 
by the corresponding Chebyshev polynomial from (44), 
like Tn(x) terms collected, and then the Tn(x) replaced 
by the original polynomials in x/α given by (43). The 
key to the economization is that only m Chebyshev 
polynomials are used, m being such that the desired 
accuracy if obtained. The resultant series expansion 
can be considerably shorter than the original Taylor 
series expansion while providing nearly the same or 
better precision over an extended range of x. 
 

(44) 

( )

( )

( )

( )

( )

( )

0

1

2
0 2

3
1 3

4
0 2 4

5
1 3 5

6
0 2 4 6

7
1 3 5 7

1

1
2
1

3
4
1

3 4
8
1

10 5
16
1

10 15 6
32
1

35 21 7
64

.

T

x T

x T T

x T T

x T T T

x T T T

x T T T T

x T T T T

etc

=
=

= +

= +

= + +

= + +

= + + +

= + + +

 

In general, if we have a Taylor series of interest with its 
coefficients given by bk, the coefficients of the 
Chebyshev-based series are given by 
 

(45) 2
2

0

2

2
p n

n n p n
p

bp n
C

p
ε

∞
+
+

=

+ 
=  

 
∑  

where εn= 1 for n=0 but otherwise 2, and 
 

(46) ( ) ( )
0

n n
n

f x C T x
∞

=
= ∑  

As an example, assume that we start with (42), 
but in the end, we only wish to retain up to 4th order 
powers of x. We also stipulate that the range of A of 
greatest interest is 0.5 < A < 1.5. Upon replacing the 
powers of x in (42) with the corresponding Chebyshev 
polynomials series from (44), we obtain 

 

(47) ( ) ( ) ( ) ( )
( ) ( )

0 1 2

3 4

0.983343 0.256475 0.017023

0.002270 0.000379

f x T x T x T x

T x T x

= + − +

−

 

It only remains to substitute in the appropriate 
polynomials from (43) for each respective Tn(x) and 
collect like powers of x up to the fourth power.  
 Several sample results are provided below. In 
this formulation, the Chebyshev economized series 
has the form  
 

(48) ( ) ( )
0

2 1
Nuse

iiii
ii

ii

f A Cx A
=

= −∑  

and the Cx coefficients are provided in Table 2. The 
error performance for the 4th order and 5th order series 
are shown in Figure 15 and Figure 16 respectively. The 
equal-ripple behavior that is characteristic of the 
Chebyshev fit is clearly visible across the range 0.50 ≤ 
A ≤ 1.50. 
 
Table 2 Economized Cx Coefficients for Equation 
(48) 
Power 

of x 
NUse= 4 NUser= 5 NUser= 6 

0 0.999986389 0.999986389 1.000000632 
1 0.249664888 0.250019730 0.250019730 
2 -0.031012944 -0.031012944 -0.031269310 
3 0.009080022 0.007660657 0.007660657 
4 -0.003032666 -0.003032666 -0.002349022 
5 - 0.001135492 0.001135492 
6 - - -0.000455762 
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Figure 15 Chebyshev Series Economized for 0.50 < 
x < 1.5, 4th Order Polynomials Used for Taylor 
Series and Chebyshev Series 
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4.7.3 Rational Series 
Rational series by definition always involve at 

least one division operation. An optimally designed 
rational series can exhibit exceptional precision while 
incurring limited complexity. Many of the approximation 
formulas provided in the classic text [9] are based upon 
rational series for example. 

The Ladder Method of Section 4.6 leads to a 
ratio of two terms and can therefore be considered to 
be a rational series method. Similarly, the two-step and 
three-step accelerated Newton’s Methods of Section 
4.2.4 also lead to a ratio of polynomials and can 
therefore be considered to be a rational series method. 
 

Figure 16 Chebyshev Series Economized for 0.50 < 
x < 1.5, 5th Order Polynomials Used for Taylor 
Series and Chebyshev Series 
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4.8 Cordic Method 
The COordinate Rotation DIgital Computer 

(CORDIC) method is widely used to compute 
trigonometric as well as other transcendental functions 
in its circular form as developed at length in the classic 
references [10,11]. A hyperbolic variant of this 
technique can be used to compute other 
transcendental quantities as well as the square root. 
An example of the circular and hyperbolic cases is 
shown in Figure 17 in which the hyperbolic equation is 
given by x2-y2= 0.60. 

A transformation must be performed before 
using the hyperbolic CORDIC to compute the square 
root. If the square root of A is sought, we first must 
compute 

 

(49) 

1
4
1
4

x A

y A

= +

= −
 

Note that in this form, the underlying square root 
computation is clear since 
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Figure 17 Example Circular & Hyperbolic Curves 
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(50) 
2 2

2 2
0 0

1 1
4 4

x y A A A   − = + − − =      
 

Pseudo-rotations are done using these starting values 
of x and y with 
 

(51) ( )

1

1

1
1

2

2

tanh 2

1 0, 1

i
i i i i

i
i i i i

i
i i i

i i

x x y d

y y x d

z z d

d if y otherwise

−
+

−
+

− −
+

= +

= +

= −

= < −

 

At the conclusion of n iterations, we have 
 

(52) 

2 2
0 0

1 0
0

0

2

1

0

tanh

1 2

n n

n

n

n
ii

n
ii

x R x y

y

y
z z

x

R

−

−

=

= −
=

 
= +  

 

= −∏

 

The convergence range of the CORDIC is 
limited as discussed in the next section. Unlike the 
circular CORDIC methods, every (3k+1)th iteration 
must be re-done (using the same 2-i value as the 
previous iteration) in order to guarantee convergence.  
 

4.8.1 Convergence of the CORDIC 
SQRT Function 

The convergence region of the CORDIC SQRT 
function is approximately 0.03 < A < e1. This can be 
clearly seen from the approximation error plots 
provided below in Figure 18 through Figure 20. Aside 
from its fairly large convergence region and good error 
performance, the CORDIC method only requires 
simple addition, subtraction, and shifts-by-1 (binary 
numbers) which makes it very attractive for hardware 
implementation. This fact makes the CORDIC family of 
algorithms very appealing to VLSI designers. 

 
Figure 18 CORDIC Error Versus A for 10 Iterations 
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Figure 19 CORDIC Error Versus A for 15 Iterations 
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Figure 20 CORDIC Error Versus A for 20 Iterations 
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4.9 Bisection Method 
The bisection method is a well-known brute 

force root-solving method for real quantities that works 
very well when the (single) zero of a function is known 
to lie between two values of x, xL < x < xH. Normally, 
the method involves the following steps: 

 
1. Select the minimum and maximum values of 

permissible x, and do whatever pre-processing is 
required in order to insure that the (single) root to 
the equation x2 – A = 0 lies within that range. 

2. Compute FL = xL
2 – A and FH= xH

2 – A. 
3. Compute xM = 0.50( xL + xH ) and FM= xM

2 – A 
4. If the sign of FL and FM differ, set xH= xM and FH= 

FM; otherwise, set xL= xM and FL= FM. 
5. If |FM| > allowable error, go to step 2 and repeat. 
 

This method essentially halves the range of 
uncertainty for the x solution with every iteration 
thereby making the convergence rate geometric in 
nature. So long as the true square root value is initially 
located between xL and xH, this method is guaranteed 
to converge. 

5 Summary of Results 
A tabular summary of the different methods 

considered in this paper is provided below for easy 
comparison. The grading is very subjective. Normally, 
division operations are very undesirable and unless a 
given method’s accuracy or convergence rate was 
exceptional, the use of division was considered very 
undesirable.  

 

 
Table 3 Summary of Square Root Methods 
Method Range Convergence 

Rate 
Divisions 

per 
Iteration 

Grade 

Sum of 
Integers 

Unlimited Slow None D 

Cont. 
Frac. 

Limited Slow 1 D 

Long-
Hand 

Unlimited Medium 1+ C 

Newton 
Type-1 

Unlimited Geometric 
then 

quadratic 

1 A 

Newton 
Type-1 
Double 

Unlimited Doubly 
geometric 

then 
quadratic 

1 A 

Newton 
Type-2 

Limited Geometric 
then 

quadratic 

0 A 

Secant Unlimited Geometric 
then 

quadratic 

1 B 

Muir Unlimited Geometric 1 C 
Ladder Unlimited Geometric 0 B 
Taylor Limited  0 C+ 
Cheby Limited  0 B+ 
Cordic Limited Geometric 0 A 
Bisect Limited Geometric 0 B 
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