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Abstract: This memorandum takes a look at 
some of the history behind the well-
known Gaussian probability density 
function (PDF). The summation of 
independent random variables (IRV) 
is specifically examined as a means 
to approximate the Gaussian PDF. 
Numerical methods are exploited to 
investigate the Gaussian PDF’s 
connection with other known 
concepts that arise in electrical 
engineering.  
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1 Introduction 
 This memorandum seeks to look at the 
Gaussian distribution in a number of ways that have not 
necessarily found their way into the main-stream media. 
This memorandum is written from an engineering 
perspective rather than a mathematical or statistical 
perspective, and ample use of numerical tools and 
techniques are used to illustrate different points 
throughout the paper. 
 The main emphasis of this memorandum 
examines the viability of using a sum of independent 
random variables (IRV) to approximate the Gaussian 
distribution. Although the Central Limit Theorem 
predicts that a Gaussian PDF results in the limit as an 
infinite number of IRVs are summed, it is very 
interesting to examine this question for a finite number 
n of summed IRVs. 
 

2 Some History 
 A short history of the Gaussian distribution and 
how it received is name can be found in [9]. This same 
reference provides three historically important 
derivations of the Gaussian PDF: (i) Herschel-Maxwell, 
(ii) Gauss derivation based upon maximum-likelihood, 
and (iii) Landon. Each of these derivations is worthy of 
some familiarity because they provide insights that can 
otherwise be missed. 
 
 

3 Sum of Uniformly Distributed 
Random Variables 

 It is well known that the sum of a set of 
uniformly distributed independent random variables 
(URV) exhibits an increasingly Gaussian PDF as the 
number of variables summed increases. In this section, 
we will look at the relationship between the resultant 
distribution of the sum, and the number of variables 
used in the summation, n. We will also show that as n 
→ ∞, the probability density does in fact become 
Gaussian. We will be primarily interested in the 
behavior of the probability tails of the distributions 
involved. 
 In the case of two summed URV’s, the 
resultant PDF is of course triangular in shape (See 
Figure 2). Larger values of n result in more complicated 
shapes that are increasingly Gaussian in shape (See 
Figure 2 through Figure 4). The question regarding the 
similarity of the summed URV PDF with that of the ideal 
Gaussian PDF versus n remains to be addressed. 
 A URV over the range [-1/2, 1/2] is shown in 
Figure 1. The total area must equal unity which results 
in the density having unit-height across the span of the 
distribution. 
 
Figure 1 Simple Uniformly Distributed RV 
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 The characteristic function is a very powerful 
tool that is well suited for the study of IRV sums and it 
will be employed throughout this memorandum. 
Although other techniques can be used to arrive at the 
same results provided in this memorandum, the 
characteristic function methods employed herein are by 
far the more simple and most engineering-centric. 
Additional information regarding characteristic functions 
can be found in Section 7.1. 
 The characteristic function for the single URV 
is given by 
 

(1) ( ) ( )
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sin f
C f
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and is nothing more than a Fourier transform of the 
underlying PDF. By definition, the variance of a URV is 
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 If n such URVs are summed, the variance 
would increase linearly with n as n/12 if the distribution 
in Figure 1 is used unchanged. In order to keep the 
variance of the sum of n URVs constant (i.e., 1/12), the 
probability density function in Figure 1 must be 
modified such that its extent on the x-axis varies with n 
as [-1/(2√n), 1/(2√n)], and its height varies as √n. The 
characteristic function for a single URV meeting these 
requirements is given by 
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and the corresponding characteristic function for the 
sum of n such URVs is given by 
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Figure 2 PDFs for the Sum of Uniformly Distributed 
RV’s 
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Figure 3 Repeat of Figure 2 But With Log Y-Axis 
Scale (Numerical Precision Limits Appearing for 
n=2 Case) 
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Figure 4 PDF for Uniformly Distributed RV Suitable 
for Use with Sums of 1,4, and 6 RVs 
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As shown in Figure 4, the PDFs become higher and 
narrower as n increases. 
 The resultant characteristic functions are 
shown from (4) for n= 1, 2, 8 and 50 in Figure 5. The 
curves for n=8 and n=50 almost lie on top of each other 
making it difficult to resolve them individually in the 
figure. Based upon this figure, it may seem likely to 
assume that perhaps a sum of 50 URVs is adequate to 
closely approximate a true Gaussian PDF, but as we 
will see shortly, this conclusion may be premature 
depending upon the judgment criteria adopted. As 
shown in Figure 6, the shape of the characteristic 
function is still changing even for n= 500. 
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Figure 5 Characteristic Functions for n= 1, 2, 8 and 
50 (Positive x-Axis Portion Only) 
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 From Figure 6, it is apparent that the shape of 
the characteristic function is approaching an asymptotic 
limit as n increases. This is indeed true.  
 
Figure 6 Characteristic Functions for Uniform RV 
Sum (Similar to Figure 5 Except Log Scale for Y-
Axis) 

0 0.5 1 1.5 2 2.5 3 3.5 4
1 .10

12

1 .10
11

1 .10
10

1 .10
9

1 .10
8

1 .10
7

1 .10
6

1 .10
5

1 .10
4

1 .10
3

0.01

0.1

1

2 RVs
8 RVs
50 RVs
500 RVs

Comparison of C0(f) for Diffent n

Frequency, f

|
 C

(f
,n

) |

 
 Since there is a one-to-one relationship 
between a PDF and its characteristic function, it is 
worthwhile to investigate the behavior of equation (4) 
as n → ∞. If the resulting characteristic function in the 
limit equals the characteristic function of an ideal 

Gaussian RV, we will in fact have shown that an infinite 
sum of URVs is in fact Gaussian. Pursuing this path 
further, we can first make use of the Taylor series 
expansion for the sine function in (4) to write 
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where only the first two terms of the expansion have 
been retained and x= πf / √n. The binomial expansion 
formula can be used next to expand the exponentiation 
portion in equation (4) as 
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in which α= (πf)2 / (6n). Once α is substituted into (6), 
we obtain the more interesting result 
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where u= (πf)2/6. In this form, it is clear how the role of 
n is eliminated as n → ∞ with the numerator and the 
denominator “n-terms” canceling out. In the limit, we 
may subsequently write 
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This result is unmistakable recalling that the Taylor 
series expansion for a simple exponential is given by 
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We can subsequently conclude that 
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where σ2= 1/12 as we started out with. The right-hand 
side of (10) is the well-known characteristic function for 
an ideal Gaussian RV. Since the characteristic function 
of the URV sum equals the characteristic function of 
the ideal Gaussian in the limit as n → ∞, we can 
conclude that the sum does in fact become 
asymptotically Gaussian. 
 Even though the Central Limit Theorem of 
probability theory clearly predicts that the URV sum will 
become Gaussian in the limit, this is nonetheless an 
intriguing and exciting result. For one thing, the result 
shows that the truncation of the characteristic function 
details beyond the first two terms retained in (5) does 
not matter. Intuitively, it is therefore very plausible that 
the shape of the RV’s PDF being summed probably 
does not matter significantly either, which is again 
another conclusion that the Central Limit Theorem 
would predict. We will take a short look at this aspect of 
summing RV with other density functions in Section 4. 

3.1 Uniformly Distributed RVs: How 
Many? 

 We know from the preceding discussion that 
the sum of URVs becomes Gaussian in the limit as n → 
∞. It is interesting however to look at the behavior of 
the resulting PDF when a finite number of URVs are 
used in the summation.  
 Since the variance of a sum of independent 
URVs is equal to the sum of their individual variances, 
there is no mystery regarding the behavior of the 
variance with n. The behavior of the probability tails is 
however of considerable interest, particularly for any 
work involving the modeling of Gaussian noise. The 
PDF of the sum is most easily computed by using the 
inverse of the characteristic function (4) as 
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The tail probability for the sum on n URVs can be 
computed as 
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for λ ≥ 0. It is natural to proceed by changing the order 
of integration which leads to 
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and we are left to deal with an inner integral of dubious 
nature (integration to ∞ of the complex exponential). 
 The inversion of the characteristic function in 
this manner has received substantial attention in the 
literature [3] because this is a frequently encountered 
computational problem, and several approaches may 
be used to compute P(λ).  
 A frequent starting point for the inversion of a 
characteristic function is the Gil-Pelaez theorem [7] that 
states that the cumulative distribution F(x) can be 
computed from the characteristic function as 
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given the characteristic function φ(f) [4] where 
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We will make use of this same starting point in the 
inversion method used here. 
 If the integration in (14) is approximated by a 
trapezoidal sum, the Beaulieu series results [5],[6]. As 
a side note, if n is strictly even in (4), the characteristic 
function value will be strictly real and positive and the 
inversion formula may be further simplified to 
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 The resulting integral in either form is 
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nonetheless difficult to evaluate with high precision, 
particularly for small values of n which lead to extensive 
tails in the characteristic function φ(f). The integrand is 
also difficult to deal with near f=0. If however, (14) is 
discretized effectively as a discrete Fourier transform 
(DFT), the very nice closed-form series solution given 
as 
 

(17)  
( )2

1,

Im 21
( ) 2

2

oj r F x
o

r Odd

e r F
F x

r

π φ π
π

−∞

=

  = − ∑  

 
results as reported in [4]. In this series solution, the 
parameter Fo governs the sampling interval used in the 
frequency domain, and it should be chosen small 
compared to the frequency behavior of the 
characteristic function so that precise results are 
obtained.  
 Using this result and the characteristic function 
derived earlier in (4), we are equipped to investigate 
the tail probability behavior of the random variable sum 
for finite n compared to the ideal Gaussian cumulative 
PDF. 
 The tail probabilities given as 1-F(x) are 
computed for a number of different cases in Figure 7 
through Figure 12. Depending upon the circumstances 
involved, these figures provide insight into “how 
Gaussian” a given situation is when a number n of 
URVs are being summed. The value xmax that is 
shown in some of the plots corresponds to the absolute 
maximum value of x that can occur when summing n 
URVs as we have been discussing. Mathematically, 
xmax= (√n) / 2. 
 
 
 
Figure 7 Trivial Case n=2 
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Figure 8 Case n=4 
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Figure 9 Case n=10 
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Figure 10 Case n=20 
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Figure 11 Case n=40 
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Figure 12 Case n=100 
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4 Summing Other Types of RVs 
 Based upon the earlier discussion involving the 
Central Limit Theorem, we know that summing other 
types of independent random variables will ultimately 
lead to a Gaussian distribution also. A more interesting 
question pertains to how quickly the sum of n such RVs 
approaches the Gaussian PDF shape, and whether the 
shape of the underlying PDF has any real significance 
in the similarity with the Gaussian PDF for finite n. 

4.1 Triangular PDF 
 It seems rather intuitive to first consider this 
question in the context of a triangular-shaped PDF. The 
triangular PDF case is particularly interesting because 

this shape naturally results when two independent 
URVs are summed. Consequently, we should fully 
expect that summing n RVs with a triangular PDF will 
be precisely equivalent to summing 2n URVs. No 
further work is required to understand how the sum of 
triangularly distributed RVs will behave. 

4.2 Trapezoidal PDF 
 Consideration of a trapezoidal PDF brings 
something a little different to bear. However, a 
trapezoidal PDF corresponds to the PDF that occurs 
when summing two independent URVs having different 
variances, so the similarity with our previous results for 
uniformly distributed RVs will be substantial. 
 In the case where the two URVs have the 
PDFs shown in Figure 13  with α > β, the resulting PDF 
for the sum of the two RVs will be as shown in Figure 
14 with the accompanying characteristic function given 
as 
 

(18) ( ) ( ) ( )sin 2 sin 21 1
2 2 2 2

f f
C f

f f

πα πβ
α πα β πβ

   
=    
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�  

 
where α and β are arbitrary. Since this case is also very 
similar to the uniformly distributed case that we have 
already looked at, it will not be considered further here. 
 
Figure 13 Two Uniformly Distributed RVs with 
Different Variances 
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Figure 14 Resultant PDF for Sum of Two 
Independent Uniformly Distributed RVs with 
Different Variances 
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4.3 Parabolic PDF 
 In this section, we will consider a truly new 
basic PDF shape as given by 
 

(19) ( ) ( )23
1 1; 0

4xf x x for x otherwise= − ≤  

 
This PDF has the central peak like that of the triangular 
PDF but is more smooth out to the x-axis endpoints. 
The variance of this PDF as given by (19) is 1/5. A 
numerical method for creating parabolically distributed 
RVs is described in Section 7.4.  
 A scaling factor must be applied in order to 
obtain a variance of 1/12 like that which was carried 
throughout the uniformly distributed RV discussions, 
and the dependency on the number of RVs summed n 
must also be added in order to keep the variance of the 
RV sum constant. Taking these additional factors into 
account, the appropriate PDF is given by 
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with α= √(5/12). The characteristic function of the 
probability density for the sum of n parabolically 
distributed RV’s (PRV) is then given by 
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Since fx( ) is an even function of x, the complex 
exponential within (21) simplifies to a simple cosine. In 
order to have better numerical accuracy for Cpar(f,n), 
use of a closed-form solution for Cpar(f,n) should be 
made, and some calculus leads to the respective 
solution in (22). This characteristic function result can 
then be used in (17) to compute the underlying PDF of 
the RV sum. Several example calculations for the sum 
of parabolic PDF RVs are provided here in Figure 15 
through Figure 17. 
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Figure 15 Parabolic Distributed RV Sum n=4 
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Figure 16 Parabolic Distributed RV Sum n=20 
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Figure 17 Parabolic Distributed RV Sum n=40 
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 A casual comparison of these results with 
those of the uniformly distributed case reveal that the 
parabolic RV sums are somewhat more faithful in 
producing the near-Gaussian PDF characteristic for n < 
40. The differences are not substantial however, except 
for very small n. Once again, we see that the onset of 
the Central Limit Theorem supercedes the shape of the 
underlying individual RV PDF substantially. 

5 Application 
 Years ago before processors and digital signal 
processing were far less powerful than they are today, 
creating a Gaussian random variable was not 
necessarily a trivial matter. The temptation to do 
something as simple as adding URVs together to 
address this issue was always lurking. Highly accurate 
creation of Gaussian RVs otherwise involves a 
logarithmic and square-root function as shown later in 
this section.  
 In more recent times, the most prevalent 
manner for generating quality Gaussian RVs is to make 
use of the Box-Muller algorithm in conjunction with 
multiple linear congruence generators that create a 
high-quality uniformly distributed RV. The Wickmann-
Hill algorithm is often cited regarding the creation of 
high-quality uniformly distributed RVs. 
 The Box-Muller algorithm is based upon 
starting with a 2-dimensional Gaussian PDF and 
converting it into polar form. 

(23) 
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=
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In the case where we take the variances of x and y to 
be identically equal to σ2, this simplifies further to 
 

(24) ( ) ( )2 2
2

1

2
, 2

1
,

2

x y

x yf x y e σ

πσ
− +

=  

 
It is straight forward to convert this 2-dimensional PDF 
to polar form as1 
 

(25) ( )
21

2
, 2,

2

r

r

r
f r e σ

θ θ
πσ

 −   =  

 
where r= √ (x2 + y2) and θ= atan(y,x). If we further 
integrate out the uniformly distributed parameter θ, we 
are left with the well-known Rayleigh distribution and it 
is a simple matter to compute the cumulative probability 
function for the Rayleigh case as 
 

(26) ( )
2 21 1

2 2
2

rr
P e dr e

λ
σ σ

λ

λ
σ

   ∞ − −      = =∫  

 
This result can be easily transformed into a form that 
makes it possible to create Rayleigh RVs from a 
uniformly distributed RV since we may write 
 

(27) ( )22 ln Pλ σ λ= −     

 
This is the same formula used in the Box-Muller 
Gaussian RV algorithm with P(λ) replaced by a uniform 
random number generator spanning (0,1]. Once 
equipped with the Rayleigh-distributed RV λ, it is a 
simple matter to augment this with the uniformly 
distributed phase θ over (0,2π] and form two 
independent Gaussian RVs as 
 

                                                      
1 θ is uniformly distributed over 2π and does not 
explicitly show up in this equation. Integration with 
respect to θ would eventually be involved at some point. 
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(28) 
( )
( )

1

2

cos

sin

g

g

λ θ
λ θ

=

=
 

 
 Some of the results presented herein may also 
provide some insight into physical problems where a 
finite number of RVs are effectively added together 
during some process. Expansion of the concepts 
developed here can shed insight into whether or not the 
underlying process may be assumed to be Gaussian or 
not, and what kind of ensuing errors may follow if the 
Gaussian assumption is nevertheless made.  
 Computation of bit error rate (BER) for a bit 
synchronizer or digital communication system often 
entails inversion of a characteristic function if an 
analytical solution is pursued. In the case of a bit 
synchronizer, it is common place to look at BER in the 
presence of Gaussian noise and intersymbol 
interference (ISI). The characteristic function for the 
Gaussian noise is known whereas the characteristic 
function for the ISI must be found. If the probability of 
data-ones and data-zeros are equal, and the noise-free 
output signal shape for an individual data symbol can 
be represented by g(t) in which t=0 corresponds to the 
steady-state sampling point for the symbol, it can be 
shown that the characteristic function for the ISI is 
given by [8],[9] 
 

(29) ( ) ( )
0

cos 2ISI
e
e

C f fg eTπ
+∞

=−∞
≠

=   ∏  

The characteristic function of the Gaussian noise plus 
ISI is then simply the product of the two characteristic 
functions, and (17) may be used to evaluate the BER in 
the case of hard decisions. 
 Any practicing engineer who works with 
random quantities should be certain to add the Box-
Muller algorithm to their toolbox if not already present. 
The inversion formula given by (17) in Section 3.1  and 
(31) in Section 7.3 should be equally tucked away for 
future use. 
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7 Appendix: Notes 
 

7.1 Characteristic Functions 
 The characteristic function is an indispensable 
tool in some areas of probability theory. One of these 
areas involves the sum of IRVs because the PDF of the 
sum is given by a convolution of the individual PDFs 
involved. Since it is far easier to work with an n-fold 
product of Fourier transforms than to do n convolutions, 
the Fourier-based characteristic function approach is 
much preferred. 
 The characteristic function of a PDF fx(x) is 
given by definition as 
 

(30) ( ) ( ) 2j fx
x xC f f x e dxπ

+∞

−∞

= ∫  

 
The inverse Fourier transform is used to compute the 
underlying PDF from a given characteristic function. 
 We make use of the characteristic function in 
primarily two ways within this memorandum. In the first 
manner, we use it to replace the n-dimension 
convolution that would result from summing n IRVs with 
a much easier n-fold multiplication of characteristic 
functions. In the second manner, we make use of the 
one-to-one correspondence between a PDF and its 
characteristic function in order to show that in the limit 
as n → ∞, the IRV sum does in fact become a 
Gaussian PDF. This conclusion follows from 
recognizing that the underlying characteristic function 
as n → ∞ is shown to equal the characteristic function 
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of a Gaussian RV. 
 In general, characteristic functions are 
invaluable when dealing with IRV involving sums as 
well as moments. The interested reader is encouraged 
to consult [2] for additional details. 
 

7.2 Cumulative PDF Characteristic 
Function 

 From transform theory, we know that if a 
probability density function fx(x) has a characteristic 
function φx(f), the transform of the cumulative 
probability function Fx(t) is given by2 φx(f) / (-j2πf). This 
may be substantiated by noting that 
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∫

 

 

7.3 Inversion of Characteristic 
Functions 

 
 A formula similar to (17) is available for the 
inversion of a characteristic function to its respective 
probability density function [4]. The utility of this series-
style solution should not be underestimated, and it is 
therefore included in this appendix for that reason. 
 

(31) ( )2

1,

( ) 4 Re 2oj r F x
x o o

r Odd

f x F e r Fπ φ π
∞

−

=

 =  ∑  

 

                                                      
2 The negative sign is due to the definition of the 
characteristic function transform which uses a complex 
exponential kernel function of exp(j2πfx) which is 
slightly different than for the forward Fourier transform. 

7.4 Creating Parabolically 
Distributed RVs 

 The creation of parabolically distributed RVs is 
offered here without proof based upon some of the 
techniques employed in Section 5. Assume that F is a 
URV distributed on the range (0,1]. The corresponding 
PRV which should be mapped to this value of F is the 
solution x to the equation 
 
(32) 3( ) 3 4 2 0g x x x F= − + − =   
 
Although inefficient for practical implementations, the 
Newton-Raphson technique can be used to solve (32) 
using the iterative formula 

(33) 
( )

1 3 3
k

k k
k

g x
x x

x+ = −
−

 

 
with x0= 0 and k ∈ [0,10]. The returned PRV is given by 
x10 for each value of F.  
 

7.5 Unsuitable PDFs 
 Not all RV PDFs are suitable for summing in 
the manner discussed in this paper. Take for instance 
the rational PDF given as 
 

(34)  ( ) 2 2

1
x

a
f x

a xπ
=

+
 

 
The total probability for this choice of PDF is unity as 
required, but the variance of the underlying PDF is 
unbounded. In general, the exponent of x in the 
denominator must exceed the exponent of any x-term 
in the numerator by more than 2 in order to avoid this 
problem.  
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