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1. Introduction 
 
     An estimate of the orbital doppler that can occur 
for a fixed ground station can be obtained by 
considering the simple planar circular orbit case that 
is shown in Figure 1. In this case, the earth’s radius is 
given by R and the satellite’s altitude above the 
earth’s surface is denoted by H. The instantaneous 
line-of-sight (LOS) range between the ground station 
and the satellite is given by L. 
     In the following discussions, the acceleration due 
to gravity is taken to be g = 9.81 m/s2 and the earth’s 
radius is assumed to be R= 6437 m.  The orbital 
velocity can be quickly computed by simply equating 
the radial acceleration to the acceleration due to 
gravity which leads to 
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For low earth orbits where H << R, asymptotically 
we have  
 

cv gR→                          (2) 
 
which equates to 7.95 km/s or approximately 17,200 
miles per hour.  
    The quantity of interest here as far as doppler is 
concerned is the time-rate of change of the LOS 
distance L. In this simple model, the x and y 
coordinate values are used to denote the satellite’s 
planar position at any given instant in time.  Clearly 
for a circular orbit, we have 
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The distance L is then given by 
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Figure 1 Planar Circular Orbit for a Ground 
Station 
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The direct LOS velocity as viewed by the ground 
station is given by the time derivative of (5) as 
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and the time-derivatives are easily substituted in by 
making use of (3). It turns out that the ratio between 
the ideal circular orbital velocity and the escape 

velocity ( H << R ) is 2 . Therefore, the worst-case 
doppler that we can expect to see in practice will at 
most be approximately 1.4 times that predicted by the 
circular-orbit theory. 
     The satellite’s (x,y) coordinates are given by the 
sine and cosine functions for the circular orbit as 
shown in Figure 2. The preceding equation (5) was 
used to compute the LOS slant range to the satellite 
as shown in Figure 3, and equation (6) was used to 
compute the LOS radial velocity to the satellite. 
Since doppler frequency is directly related to the 
satellite’s LOS radial velocity, it is a simple matter to 
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take the results in Figure 4 and compute the resulting 
doppler profile as seen by the ground station. 
     In Figures 2 through 4, time-axis limits are shown 
corresponding to the rising and setting of the satellite 
with respect to the ground station’s local horizon. In 
the example adopted here, these times are given by 
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These equations can be found by using the geometric 
limits as given by Figure 1. 

     Determination of type Type-3 PLL’s tracking 
behavior when subjected to this orbital doppler 
requires that some additional details be developed. In 
general, the doppler profile contains some higher-
order terms that the Type-3 PLL cannot track-out 
perfectly thereby leading to some residual tracking 
bias or error.  
Figure 2 Satellite (x,y) Coordinates for H= 700 
km 
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Figure 3 LOS Slant Range to Satellite Versus 
Time (H= 700 km) 
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Figure 4 LOS Velocity with Respect to Ground 
Station (H= 700 km) 

0 1000 2000 3000 4000 5000 60001.104

5000

0

5000

1.104

Time, sec

V
el

oc
ity

, m
/s

ec

Trise Tset

 

2. Overview of Type-3 PLLs 
 
 There is not a large amount of literature 
immediately available on Type-3 PLLs, so some 
review of the basic tenants is appropriate. The 
general open-loop gain transfer function for a Type-3 
PLL is given by 
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Generally, the time constants τ2 and τ3 are chosen to 
be equal, so this simplifies the open-loop gain 
function to 
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The phase of the open-loop gain function is clearly 
given by 
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Obviously, ∠ GOL(s) = -π for ωτ2 = 1 which means 
that this situation occurs for        ω= τ2

-1. The gain at 
this critical frequency is given by 
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A positive gain margin results if and only if GM > 1. 
 For frequencies ω > τ2

-1, the control loop is 
very similar to a classical Type-2 loop.  To first-
order, for ω > τ2

-1,  
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so the unity-gain cross-over frequency ( ωc ) is 
approximately given by 
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Figure 5 Open-Loop Gain Characteristic for 
Type-3 PLL 
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From earlier, the gain margin was given by (11) and 
therefore, 
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The exact result for ωc can be found by solving 
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Given an initial estimate for the true solution 
(denoted by ωx), a root-polishing recursion can be 
applied as 
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Comment: Use of K and τ1 is redundant. If we 
simply assign Kx = K/τ1

2, then the equation to be 
solved simplifies to  
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3. Near Equivalence for the 
Type-3 PLL with the 
Classical Type-2 PLL 
 
 For a given value of ωc, a Type-3 PLL 
behaves very similarly to a Type-2 PLL having a 
damping factor of ζ given by 
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Assuming that we have a pre-specified value for ωc, 
we need to know how to select τ2. From (18), we 
obtain that 
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In order to have α > 0, it is straight forward to show 
that the only acceptable solution from (19) is 
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4. Phase Tracking Error for 
Type-3 PLL in the Presence 
of Orbit-Related Doppler 
 
            For the Type-3 PLL, the transfer function 
between the tracking phase error and the applied 
input phase function is given by 
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and similarly for the output phase, 
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For the phase error process, we let 
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which leads to the state-equations given by 
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 In making comparisons between the Type-2 
and Type-3 systems, we should not equivalence ωc 
with ωn because the ωc corresponds to approximately 
the unity open-loop gain for the Type-3 system 
whereas ωn is the well-known radian natural loop 
frequency for a Type-2 PLL. 
  For the output phase of the loop when 
subjected to a given input phase trajectory, we have 
the transform relationship 
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The time behavior of the output phase can be 
computed by first making the following state variable 
assignments as 
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which leads to the state-variable equations that must 
be integrated as 
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5. Type-3 PLL Tracking 
Error Results with Orbital 
Doppler Present 
 

The preceding state equations were used along 
with the geometric orbit relationships to compute the 
PLL phase tracking error as a function of time and 
orbit altitude. The computations assumed that the RF 
carrier frequency was 2 GHz. The maximum phase 
error seen at the phase detector during a satellite pass 
is shown in Figure 6 as a function of PLL unity-gain 
bandwidth and orbital altitude (PLL gain margin 
constant at 20 dB). 

 

Figure 6 Maximum PLL Bias Error Versus 
Satellite Altitude for Type-3 Tracking PLL 
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Due to the PLL’s third-order characteristic equation, 
it should not be surprising that doubling the PLL’s 
unity-gain bandwidth causes the worst-case phase 
error to be reduced by a factor of 23

 approximately.  
 One specific set of computation results is 
shown in Figure 7 in order to illustrate the time-
behavior of the tracking error during a satellite pass 
over the ground station. These results are based upon 
a PLL Fc= 20 Hz and a gain margin of 20 dB. 
 
 
Reminder: None of the results presented here have 
included the effects of earth rotation or of elliptic 
orbits. 

Figure 7 Phase Tracking Error for a Type-3 PLL 
(Fc= 20 Hz, GM= 20 dB) 
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6. Accommodating Elliptical 
Non-Planar Orbits 
 
 
To be continued… 
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