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Phase Noise Effects on Square-
QAM Symbol Error Rate 
Performance 
 
James A. Crawford 
 
 Phase noise is an increasingly serious 
performance issue as the order of the QAM signal 
constellation is increased. This brief memo derives a 
formula to compute the QAM symbol error rate when 
phase noise is present with coherent demodulation. 
Only square QAM signal constellations will be 
considered. 
 Let M2 be the total number of points used in 
the signal constellation. This is equivalent to using M 
signal levels on the I and Q rails each. Further assume 
that the (voltage) distance between signal levels on the 
I and Q rails is d. A 16-QAM signal constellation is 
shown here for example in Figure 1. 
 

Figure 1 Sample QAM Signal Constellation for 16-
QAM Case 
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Figure 2 Average Energy per Symbol for Square 
QAM Constellations 

M2 M Ave. Energy per Symbol/d2 
4 2 2/4 

16 4 10/4 
64 8 42/4 

256 16 170/4 
1024 32 682/4 

  

 Assume that a data-symbol represented by the 
coordinate pair (ak, bk) is transmitted. After reception 
by a receiver, the baseband I,Q signals are given by 
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where ϕn represents a phase term due to the recovered 
phase error and or local oscillator phase noise, and nI 
and nQ are additive Gaussian noise terms each having 
variance σ2. This can be conveniently re-written in 
matrix form as 
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The I and Q channels are cross-coupled due to the 
common phase noise term ϕn. The cross-talk between 
the I and Q channels is severe because it is weighted by 
the first-order sin(ϕn) term, and also weighted by the 
potentially much stronger signal amplitude in the other 
channel. 
 Decision thresholds on the I and Q rails are 
the same when the signal level is properly normalized 
by automatic gain control (AGC). These detection 
thresholds are shown in Figure 3. 
 

Figure 3 16-QAM I and Q Rails with Detection 
Regions 
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Except for the endpoints on each rail, a symbol error 
occurs if the noise plus interference is greater than d/2.  
 

I Signal Rail 
 
A decision error on either I- or Q-channel results in a 
symbol error. The I- and Q-channels can be handled 
independently and the results combined. Attention is 
focused on the I-channel here.  
 
For all of the interior points on the I-rail (i.e., less 
endpoints), a symbol error occurs if 
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NOTE: For practical QAM usage, the phase noise 
will be reasonably small in which case ϕn  will be 

kept reasonably small also. Take for example cos(5q)= 
0.9962 whereas sin(5q)= 0.0872. In general, we can 
ignore the cos2( ) coherence loss term in steady-state 
operation because ϕ π� / 4n  

 
With this simplifying assumption, a symbol error 
occurs due to a decision error on the I-rail if 
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Since nI is mean-zero and Gaussian distributed, we 
know that 
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Let the observed interference plus noise be represented 
by 
 
 ( )ϕ= −sink n Iv b n  (6) 
 
then 
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The probability of error on the I-rail for each of the 
interior constellation points is then given by 
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Letting ( )ϕ= − sink nu v b  and substituting, 
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For the endpoints, when ( )ϕ − >sin
2k n I

d
b n , a 

symbol error only occurs one-half of the time. 
Therefore, for the average I-channel probability that 
the wrong sample value is decided on is given by 
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Similarly for the Q-channel, 
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The probability that any given symbol is received 
without error is then Pc= (1-PSI)(1-PSQ) ≈ 1 – PSI – PSQ. 
Due to the symmetric results for the I- and Q-channels 
along with the statistical independence assumed 
between the data symbol ingredients ak and bk, this 
leads finally to 
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where the angular brackets denote averaging over the 
ak’s.  
 For M points on each I and Q rail, 
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for k=0…(M/2)-1 for one-half of the levels, and the 
negative of these values for the other half. Therefore, 
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In order to calculate 2σ in the present context in terms 
of SNR, we can compute the average energy per 
symbol as 
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The average energy per bit is then 
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This leads finally to 
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 For the last step, in order to compute the final 
symbol error rate under normal operating conditions, 
we assume that ϕn  has a Tikhonov distribution. This 
function formally has a Bessel function involved, but if 
the probability density function is evaluated for large 
values of ϕn , some numerical problems can arise. An 
almost equivalent form that is better behaved 
numerically is given by 
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where ϕσ
n

is the integrated phase noise in units of 

radians rms. The symbol error rate with the phase noise 
included is at last given by 
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Sample Results 
 
 Sample results for 16-QAM and 64-QAM are 
shown here in Figure 4 and Figure 5 respectively. Not 
surprisingly, the sensitivity of 64-QAM to phase noise 
is very high. The residual error floor is very apparent 
and there is clear motivation for trying to design the 
system such that it operates with an (uncoded) SER 
more in the range of 10-3 where the phase noise impact 
is less than say at 10-5. 
 
 
NOTE: The symbol error rate with no phase noise is 
given by1 
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where bγ  is the SNR per bit, k is the number of bits 
per symbol, and M is the number of levels on each rail. 
For the 16-QAM case at hand, M=4 and k=4. 
 

                                                           
1 Proakis, Digital Communications, 2nd Edition, 1989 
page 282, equ. (4.2.144) 
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Figure 4 SER with Phase Noise for 16-QAM 
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Figure 5 SER for 64-QAM with Phase Noise 
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