
 Pendulums and Elliptic Integrals v2.doc 1 

V2.0  2004 James A. Crawford 

Pendulums and Elliptic Integrals 
 
James A. Crawford  
 
 

1. Introduction 
 

Many years ago before the advent of the “PC 
on every desktop” age, I became fascinated with the 
design of LC1 elliptic filters. As part of that endeavor, I 
also became intimately acquainted with elliptic 
integrals. Having an equal intrigue for numerical 
precision, I found that computing the elliptic integrals 
with high accuracy was very difficult if simple 
integration methods like Simpson’s Rule or Gaussian 
quadrature were resorted to. Thus began my search for a 
precision method of computations. 

Some readers will no doubt be familiar with 
the solution path involved, but to those who are not, I 
invite you to read on. 

 

2. Where Hence Elliptic 
Integrals? 

 
Elliptic integrals show up in many places, 

electronic elliptic filters for one. One of the situations 
where people encounter them first is in connection with 
simple pendulum motion.  

 

Figure 1 Classical Pendulum 
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A classical pendulum is shown in Figure 1 

where 
 

                                                           
1 LC for inductor-capacitor 

m mass of pendulum 
R length of pendulum 
g acceleration of gravity (e.g., 9.81 m/s2) 
α starting angle 
 
 If we assume that the pendulum arm itself is 
both rigid and of zero mass, it is convenient to think 
about the motion of the pendulum bob in terms of 
motion along the fixed radius R where the angle ϕ is a 
function of time. The tangential force perpendicular to 
R that the weight of the bob creates is given by 
 
 ( )sinTF mg ϕ=  (1) 
 
From Newton’s Laws of motion, this tangential force 
must be associated with a tangential acceleration which 
can be written as 
 

 
2

2

T
T T

dv d dF ma m m R
dt dt dt

dmR
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ϕ

ϕ

   = = =   
   

=
 (2) 

Proper attention to signs for the forces involved results 
in the describing differential equation in terms of ϕ 
given as 
 

 ( )
2

2 sin 0gd
dt R

ϕ ϕ− =  (3) 

 
If the angular extents allowed for the pendulum swing 
are kept small, we can approximate ( )sin ϕ ϕ≈  
which leads to the very simple differential equation 
 

 
2

2 0gd
dt R

ϕ ϕ− =  (4) 

If we now hypothesize that the solution to this 
differential equation is given by ( ) ( )sin ot A tϕ ω=  
and substitute into (4), we quickly see that this is indeed 
the correct solution with  
 

 o
g
R

ω =  (5) 

 
 Returning now to the original nonlinear 
differential equation (3), this can be pursued further by 
multiplying both sides of the equation by 
/d dtθ which creates 
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 ( )
2

2
2 sino

d d d
dt dt dt

ϕ ϕ ϕω ϕ  = 
 

 (6) 

 
and integrating both sides with respect to time results in 
 

 ( )
2

21 cos
2 o
d k
dt
ϕ ω ϕ  − = 

 
 (7) 

 
where k is a constant of integration. Assuming that the 
pendulum has a maximal displacement of angle ϕ α= , 

then ( )' 0ϕ α = , and solving for the derivative and 
taking the positive root leads to 
 

 ( ) ( )2 cos coso
d
dt
ϕ ω ϕ α= −    (8) 

 
Integrating one more time produces 
 

 
( ) ( )2 cos cos

o
d tϕ ω

ϕ α
=

−  
∫  (9) 

 
The time required for ϕ to increase from 0 to α is  
 

 
( ) ( )04 2 cos cos

T R d
g

α ϕ
ϕ α

=
−∫  (10) 

 
Using the identities ( ) ( )2cos 1 2 sin /2ϕ ϕ= −  

and ( ) ( )2cos 1 2 sin /2α α= −  in (10) leads to 
 

 
( )2 2

0

2
sin /2

R dT
g k

α ϕ
ϕ

=
−∫  (11) 

 
with ( )sin /2k α= . A new variable can be defined 

as ( ) ( )sin /2 sinkϕ θ=  from which 
 

 ( )cos cos
2 2
d k dϕ ϕ θ θ  = 

 
 (12) 

which upon re-arrangement gives 
 

 ( ) ( )
( )

2 2

2 2

2 sin /22 cos
1 sincos

2

kk dd
k

ϕθ θϕ ϕ θ

−
= =

  −
 
 

(13) 

 
Substituting (13) into (11) leads finally to 
 

 
( )

/2

2 2
0

4
1 sin

R dT
g k

π θ
θ

=
−∫  (14) 

 
  

The integral involved in (14) is an elliptic 
integral of the first kind. With ( )sin /2k α= , the 
integral is very well behaved because k is always < 

2 /2 . In the case of elliptic filter usage however, k 
is often very close to unity thereby making numerical 
evaluation of (14) considerably more challenging. 
      

 
 

Aside: Conservation of energy may be used to quickly 
arrive at the same starting point represented by (8). The 
change of potential energy that occurs from angular 
position α to ϕ can be equated to the increase in kinetic 
energy (since the bob is momentarily motionless at 
angular position α) as 
 

 ( ) ( )21 cos cos
2
mv mgR ϕ α= −    (15) 

 
Since the velocity v must be tangential to the arc that is 
scribed by the bob, at any instant in time 

( )/v R d dtϕ= . Substituting this into (15) leads 
directly to (8). 
 

The elliptic integral of the first kind is 
generally presented as 
 

 ( )
( )2 2

0

,
1 sin

x dF k x
k

θ
θ

=
−∫  (16) 

 
with the complete elliptic integral of the first kind given 
by F(k,π/2).  It is easy to show that  
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Straight forward visual inspection of (17) easily shows 
that the series is slow to converge when k is reasonably 
close to unity. 

 

3. Accurate Computation of 
the Elliptic Integral of the 
First Kind 
 

Gauss’s Transformation2 can be used to expand 
the elliptic integral (16) into an expansion where 

 
 ( ) ( ) ( )1 1 1, 1 ,F k k F kϕ φ= +  (18) 
 
This expansion can be repeatedly applied ultimately 

leading in the limit to ( )lim ,
2p pp

F k πφ
→∞

= . The 

expansion generally converges to 10 or more decimal 
place accuracy within only a few recursions of (18).  
 The other formulas that accompany (18) are the 
following: 
 

 

( ) ( )
( )
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1

1 2 2

' 1
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1 '

1 ' sinarcsin
1 1 sin

k k
kk
k

k
k

φφ
φ

= −
−=
+

 +
 =
 + − 

 (19) 

  
 In the case where the complete elliptic integral 
of the first kind is to be computed (i.e., /2ϕ π= ), a 
different set of recursive formulas [7] can be used to 
compute the desired result with even less effort as given 
by 
 

                                                           
2  Also referred to as Landen’s Transformation 
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 (20) 

 
 

4. Comparison or Linearized 
Model Results with Ideal 
 

All of the mathematics are greatly simplified if 
the linearized model represented by (4) is used rather 
than the complete nonlinear model. For the linearized 
case, the frequency of the pendulum’s motion is exactly 
computable as (5) and the pendulum’s motion is 
precisely sinusoidal. 

For a very large range of starting phases, the 
pendulum’s motion is very closely approximated by a 
sinusoid assuming the time period given by (14). In all 
but the most rigorous cases, this is in all likelihood 
adequately precise. 

The appreciation for the linear differential 
equation represented by (4) is quickly appreciated over 
the nonlinear differential equation (3) when implicit and 
or higher-order numerical solutions of the differential 
equation are desired for greater accuracy. The author 
has frequently used the second-order Gear method [5] 
with good success, but this formulation is not possible 
with the nonlinear differential equation (3).  

 

5. Numerical Solution of the 
Differential Equations 

 
The differential equation (3) solution may be 

computed numerically in the time domain. 

5.1 Forward Euler Integration 
 
Although prone to accuracy and stability 

issues, the forward Euler method is often used for 
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solving differential equations because it is extremely 
simple to use. The forward Euler method is an explicit 
integration method [5-6]. In this case, the time-
derivative is approximated as 

 

 ( ) ( ) ( )' s t h s ts t
h

+ −
≈  (21) 

 
where the time increment is given by h. Focusing on the 
starting differential equation (3), it is simple to re-cast 
this second-order differential equation as a pair of first-
order differential equations by defining 
 

 
( ) ( )

( )

1

2

U t t
dU t
dt

ϕ
ϕ

=

=
 (22) 

leading to 
 

 
( )2 sin 1

1 2

gdU U
dt R
dU U
dt

= −

=
 (23) 

 
Substituting (21) into (23) results in 
 

 
( )1

1

2 2 sin 1

1 1 1

n n
n

n n
n

gU U U
h R

U U U
h

+

+

− = −

− =
 (24) 

where the index n represents the value of the parameter 
at time t= nh where h is the constant time step used. 
Solving (24) for the parameter values at the next time 
step n+1 produces 
 

 
( )1

1

2 2 sin 1

1 1 2

n n n

n n n

ghU U U
R

U U U h

+

+

 = + − 
 

= +
 (25) 

 
The fact that the forward Euler method is an explicit 
method results in only time-index n values being on the 
right side of the equal side and the n+1 (future) time-
index values being on the left-hand side.  
 The set of difference equations can be easily 
programmed and in the case of R= 1 meter and α= 30 
degrees, the result is as shown in Figure 2. Due to 
numerical imprecision even with h= 6msec, the 
computed solution slowly grows in amplitude rather 
than remaining constant-envelope as the ideal solution 

shows. Error propagation with the forward Euler 
method is so poor that the amplitude growth is difficult 
to avoid. 

Figure 2 Forward Euler Differential Equation 
Solution 
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5.2 Backward Euler Integration 
 

Backward Euler integration is an implicit 
integration method and as such, it is not possible to use 
this method unless the differential equation is linearized 
as in (4). Although this is a short-cut path that we wish 
to avoid, this path will be considered in order to show 
the greater stability properties of the backward Euler 
method as compared to the forward Euler method. 

For the backward Euler method we write 
 

 1 1

1 1

2 2 1

1 1 2

n n n

n n n

ghU U U
R

U U hU

+ +

+ +

= −

= +
 (26) 

 
or in matrix form 
 

 1

1

1 21
2 11

n n

n n

gh U U
R U Uh

+

+

 
     =        − 

 (27) 

 
 

Solving this for the next-step state-variable values, 
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This set of simultaneous difference equations can be 
programmed very easily also leading to the results 
shown in Figure 3. In the backward Euler case, the  

Figure 3 Backward Euler Differential Equation 
Solution 
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numerical imprecision leads to a decay in the envelope 
magnitude, so although this is clearly a more stable 
situation, the extent of the numerical error is about the 
same as for the forward Euler method. 
 In the section that follows, we will see that the 
4th order Runge-Kutta method is dramatically more 
accurate and well behaved than either Euler method 
considered thus far. 
 

5.3 Runge-Kutta Method 
 
The derivation of the Runge-Kutta method is 

beyond the scope of this memorandum, but interested 
readers may refer to [4,6]. Results for the second-order 
and fourth-order Runge-Kutta methods applied to the 
second-order differential equation (3) follow. 

 

5.3.1 Second-Order Runge-Kutta 
 
The formula for the second-order Runge-Kutta 

solution to the second-order differential equation are 
given by 

 
( )
( )

1
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2 1 1
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 

= +
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 (29) 

 
In the context of the present set of differential equations, 
 

 

( ) ( )

( )

( ) ( )

( )

1

2

2 ... sin 1

1 ... 2

U t t
dU t
dt

gdU f U
dt R
dU g U
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ϕ
ϕ

=

=

= = −

= =

 (30) 

which leads further to 

( )1

1

2 1

2 1

1 2

1 2

sin 1

2

sin 1
2

2
2

1 1
2 2

n

n

n

n

n n
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gk U
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j U
g hk U j
R

hj U k

U U hj
U U hk

+

+

= −

=

 = − + 
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= +
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 (31) 

 
These finite difference equations are easily programmed 
and the results for several different time steps are shown 
in Figure 4 through Figure 6. As shown in these figures, 
the results follow the exact solution very closely until 
the time step is increased too far to 200 msec as shown 
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in Figure 6 where the onset of some instability is 
apparent. 
 

Figure 4 2nd Order Runge-Kutta with h= 30 msec 
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Figure 5 2nd Order Runge-Kutta with h= 75 msec 

0 2 4 6 8 10 12 14 160.6

0.4

0.2

0

0.2

0.4

0.6

2nd Order Runge-Kutta
Ideal

2nd Order Runge-Kutta

Time, sec

Ph
as

e,
 ra

d.

Tp

 

Figure 6 2nd Order Runge-Kutta with h= 200 msec 
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5.3.2 Fourth-Order Runge-Kutta 
 
In the case of the 4th-order Runge-Kutta 

method, the applicable formulas are as follows: 
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= + + + +  (32) 

 
This set of difference equations is easily programmed 
and the results are shown for several time steps in 
Figure 7 through Figure 9. As shown in these figures, 
the computed results match the ideal results almost 
exactly even at the large time step of 200 msec. 
 Although other techniques may be superior to 
the Runge-Kutta methods explored here, the simplicity 
of the method combined with the very good precision 
make it a highly recommended method for use in 
solving differential equations numerically. 

Figure 7 4th Order Runge-Kutta with h= 30 msec 
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Figure 8 4th Order Runge-Kutta with h= 75 msec 
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Figure 9 4th Order Runge-Kutta with h= 200 msec 
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6. Connections with Elliptic 
Filters 
 

Two of the best treatments of elliptic filter 
design are provided by [2,3,8]. Having been a long 
admirer of Sidney Darlington’s work with elliptic 
filters, a number of his related publications are listed 
here as references [9-13].  

A very insightful and unifying view of 
Butterworth, Chebyshev, and elliptic filters is provided 
in [9]. Quoting from [9]: 

 
“Formulas for the critical frequencies involved with 
the design of Butterworth, Chebyshev, and elliptic 
filters are identical when expressed in terms of 
appropriate variables. For Butterworth filters, the 
appropriate variable is simply the frequency s jω= . 
For Chebyshev filters, it is a new variable defined by a 
simple transformation on ωωωω. For elliptic filters, the 
appropriate variable is determined by a sequence of 
transformations applied recursively, each similar to 
that for the Chebyshev filters. Interpretation in terms 
of elliptic function transformations is a possible but 
unnecessary complication. “ 
 
This reference provides the most concise and simple 
method for calculating the elliptic filter critical 
frequencies that I am aware of. 
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are described further for the ideal type-2 PLL in Table 1-1. The feedback divider is normally present 
only in frequency synthesis applications, and is therefore shown as an optional element in this figure.  

PLLs are most frequently discussed in the context of continuous-time and Laplace transforms. A 
clear distinction is made in this text between continuous-time and discrete-time (i.e., sampled) PLLs 
because the analysis methods are, rigorously speaking, related but different. A brief introduction to 
continuous-time PLLs is provided in this section with more extensive details provided in Chapter 6. 

PLL type and PLL order are two technical terms that are frequently used interchangeably even 
though they represent distinctly different quantities. PLL type refers to the number of ideal poles (or 
integrators) within the linear system. A voltage-controlled oscillator (VCO) is an ideal integrator of 
phase, for example. PLL order refers to the order of the characteristic equation polynomial for the 
linear system (e.g., denominator portion of (1.4)). The loop-order must always be greater than or equal 
to the loop-type. Type-2 third- and fourth-order PLLs are discussed in Chapter 6, as well as a type-3 
PLL, for example.  
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Feedback
Divider

1
N

outθ

 
Figure 1-2 Basic PLL structure exhibiting the basic functional ingredients. 

 
Table 1-1 

Basic Constitutive Elements for a Type-2 Second-Order PLL 
Block Name Laplace Transfer Function Description 

Phase Detector Kd, V/rad Phase error metric that outputs a voltage that is proportional 
to the phase error existing between its input θref and the 
feedback phase θout/N. Charge-pump phase detectors output 
a current rather than a voltage, in which case Kd has units of 
A/rad. 

Loop Filter 
2

1

1 s
s

τ
τ

+
 

Also called the lead-lag network, it contains one ideal pole 
and one finite zero. 

VCO 
vK

s
 

The voltage-controlled oscillator (VCO) is an ideal 
integrator of phase. Kv normally has units of rad/s/V. 

Feedback Divider 1/N A digital divider that is represented by a continuous divider 
of phase in the continuous-time description. 

 
The type-2 second-order PLL is arguably the workhorse even for modern PLL designs. This PLL 

is characterized by (i) its natural frequency ωn (rad/s) and (ii) its damping factor ζ. These terms are 
used extensively throughout the text, including the examples used in this chapter. These terms are 
separately discussed later in Sections 6.3.1 and 6.3.2. The role of these parameters in shaping the time- 
and frequency-domain behavior of this PLL is captured in the extensive list of formula provided in 
Section 2.1. In the continuous-time-domain, the type-2 second-order PLL3 open-loop gain function is 
given by 

                                                           
3  See Section 6.2. 
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 (1.1) 

and the key loop parameters are given by 
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2 nζ ω τ=  (1.3) 

 
The time constants τ1 and τ2 are associated with the loop filter’s R and C values as developed in 
Chapter 6. The closed-loop transfer function associated with this PLL is given by the classical result 
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 (1.4) 

 
The transfer function between the synthesizer output phase noise and the VCO self-noise is given by 
H2(s) where 

 
 ( ) ( )2 11H s H s= −  (1.5) 

 
A convenient frequency-domain description of the open-loop gain function is provided in Figure 

1-3. The frequency break-points called out in this figure and the next two appear frequently in PLL 
work and are worth committing to memory. The unity-gain radian frequency is denoted by ωu in this 
figure and is given by 

 2 42 4 1u nω ω ζ ζ= + +  (1.6) 
 
A convenient approximation for the unity-gain frequency (1.6) is given by ωu ≅  2ζωn. This result is 
accurate to within 10% for ζ  ≥ 0.704.  

The H1(s) transfer function determines how phase noise sources appearing at the PLL input are 
conveyed to the PLL output and a number of other important quantities. Normally, the input phase 
noise spectrum is assumed to be spectrally flat resulting in the output spectrum due to the reference 
noise being shaped entirely by |H1(s)|2. A representative plot of |H1|

2 is shown in Figure 1-4. The key 
frequencies in the figure are the frequency of maximum gain, the zero dB gain frequency, and the –3 
dB gain frequency which are given respectively by 

 
 

 21
1 8 1 Hz

2 2
n

PkF
ω ζ

π ζ
= + −  (1.7) 

 0

1
2  Hz

2dB nF ω
π

=  (1.8) 

 2 4 2
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         Phase-Locked Systems—A High-Level Perspective                                                5 

 

Frequency, rad/sec
1 102 3 5 7 2 3 5

G
ai

n,
 d

B
  (

6 
dB

/c
m

) -12 dB/octave

-6 dB/octave

0 dB

4 2 2
1010log 4n nω ω ζ 

 +

nω uω

2
nω
ζ

( )1040log 2.38ζ

 
Figure 1-3 Open-loop gain approximations for classic continuous-time type-2 PLL. 
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Figure 1-4 Closed-loop gain H1( f ) for type-2 second-order PLL4 from (1.4). 
 
The amount of gain-peaking that occurs at frequency Fpk is given by 
 

 
4

10 4 2 2

8
10log  dB

8 4 1 1 8
PkG

ζ
ζ ζ ζ

 
 =
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 (1.10) 

 
For situations where the close-in phase noise spectrum is dominated by reference-related phase noise, 
the amount of gain-peaking can be directly used to infer the loop’s damping factor from (1.10), and the 
                                                           
4  Book CD:\Ch1\u14033_figequs.m, ζ  = 0.707, ωn =  2π 10 Hz. 
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loop’s natural frequency from (1.7). Normally, the close-in (i.e., radian offset frequencies less than     
ωn /2ζ) phase noise performance of a frequency synthesizer is entirely dominated by reference-related 
phase noise since the VCO phase noise generally increases 6 dB/octave with decreasing offset 
frequency5 whereas the open-loop gain function exhibits a 12 dB/octave increase in this same 
frequency range. 

VCO-related phase noise is attenuated by the H2(s) transfer function (1.5) at the PLL’s output for 
offset frequencies less than approximately ωn. At larger offset frequencies, H2(s) is insufficient to 
suppress VCO-related phase noise at the PLL’s output. Consequently, the PLL’s output phase noise 
spectrum is normally dominated by the VCO self-noise phase noise spectrum for the larger frequency 
offsets. The key frequency offsets and relevant H2(s) gains are shown in Figure 1-5 and given in Table 
1-2. 
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Figure 1-5 Closed-loop gain6 H2 and key frequencies for the classic continuous-time type-2 PLL. 
 

Table 1-2 
Key Frequencies Associated with H2(s) for the Ideal Type-2 PLL 

Frequency, Hz Associated H2 Gain, dB Constraints 
on ] 
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5  Leeson’ s model in Section 9.5.1; Haggai oscillator model in Section 9.5.2. 
6  Book CD:\Ch1\u14035_h2.m. 
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Assuming that the noise samples have equal variances and are uncorrelated, R = σn
2I where I is the 

K×K identity matrix. In order to maximize (1.43) with respect to θ, a necessary condition is that the 
derivative of (1.43) with respect to θ  be zero, or equivalently 
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 (1.44) 

 
Simplifying this result further and discarding the double-frequency terms that appear, the maximum-
likelihood estimate for θ  is that value that satisfies the constraint 
 

 ( )kˆsin 0k o k
k

r tω θ+ =∑  (1.45) 

 
The top line indicates that double-frequency terms are to be filtered out and discarded. This result is 
equivalent to the minimum-variance estimator just derived in (1.40). 

Under the assumed linear Gaussian conditions, the minimum-variance (MV) and maximum-
likelihood (ML) estimators take the same form when implemented with a PLL. Both algorithms seek to 
reduce any quadrature error between the estimate and the observation data to zero. 

1.4.3 PLL as a Maximum A Posteriori (MAP)-Based Estimator 

The MAP estimator is used for the estimation of random parameters whereas the maximum-likelihood 
(ML) form is generally associated with the estimation of deterministic parameters. From Bayes rule for 
an observation z, the a posteriori probability density is given by  

 

 ( ) ( ) ( )
( )

p z p
p z

p z

θ θ
θ =  (1.46) 

 
and this can be re-written in the logarithmic form as 

 
 ( ) ( ) ( ) ( )log log log loge e e ep z p z p p zθ θ θ   = + −           (1.47) 

 
This log-probability may be maximized by setting the derivative with respect to θ to zero thereby 
creating the necessary condition that27 
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e e

d
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d θ θ
θ θ

θ =
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If the density p(θ ) is not known, the second term in (1.48) is normally discarded (set to zero) which 
degenerates naturally to the maximum-likelihood form as 
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log 0
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27  [15] Section 6.2.1, [17] Section 2.4.1, [18] Section 5.4, and  [22]. 
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Time of Peak Phase-Error with Frequency-Step Applied 
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Note.1 See Figure 2-19 and Figure 2-20. 
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See Figure 2-19 and Figure 2-20. 
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Time of Peak Frequency-Error with Phase-Step Applied 
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See Figure 2-21 and Figure 2-22.  
Tpk corresponds to the first point in time where dfo/dt = 0. 
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Maximum Frequency-Error with Phase-Step Applied 
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% Transient Frequency Overshoot for Frequency-Step Applied 
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Linear Hold-In Range with Frequency-Step Applied (Without Cycle-Slip) 
 2

1
max 2

1
exp tan   Hz

1
nF

ζζω
ζζ

−
  −  ∆ =

  −   
 

See Figure 2-25. 

 
(2.37) 

Linear Settling Time with Frequency-Step Applied (Without Cycle-Slip) (Approx.) 
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for applied frequency-step of ∆F and residual δ F remaining at lock 
See Figure 2-26. 

 
(2.38) 

                                                           
1 The peak occurrence time is precisely one-half that given by (2.34). 
2 See Figure 2-24 for time of occurrence Tpk for peak overshoot/undershoot with ωn = 2π. Amount of overshoot/undershoot in 
percent provided in Figure 2-23. 
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2.3.2.2 Second-Order Gear Result for H1(z) for Ideal Type-2 PLL 
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Figure 2-32 Second-order Gear redesign of H1(s) (2.4). 
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2.3.3 Higher-Order Differentiation Formulas 

In cases where a precision first-order time-derivative f (xn+1) must be computed from an equally 
spaced sample sequence, higher-order formulas may be helpful.8 Several of these are provided here 
in Table 2-2. The uniform time between samples is represented by Ts. 

 

                                                           
8  Precisions compared in Book CD:\Ch2\u14028_diff_forms.m. 
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2.5.5 64-QAM Symbol Error Rate 
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Figure 2-37 64-QAM uncoded symbol error rate with noisy local oscillator.13 Circled datapoints are from (2.87). 
 

                                                           
13  Book CD:\Ch5\u13159_qam_ser.m. See Section 5.5.3 for additional information. Circled datapoints are based on Proakis 
[3] page 282, equation (4.2.144), included in this text as (2.87). 
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A more detailed discussion of the Chernoff bound and its applications is available in [9].  
 

Key Point: The Chernoff bound can be used to provide a tight upper-bound for the tail-probability 
of a one-sided probability density. It is a much tighter bound than the Chebyschev inequality given 
in Section 3.5. The bound given by (3.43) for the complementary error function can be helpful in 
bounding other performance measures. 

3.7 CRAMER-RAO BOUND 

The Cramer-Rao bound16 (CRB) was first introduced in Section 1.4.4, and frequently appears in 
phase- and frequency-related estimation work when low SNR conditions prevail. Systems that 
asymptotically achieve the CRB are called efficient in estimation theory terminology. In this text, 
the CRB is used to quantify system performance limits pertaining to important quantities such as 
phase and frequency estimation, signal amplitude estimation, bit error rate, etc. 

The CRB is used in Chapter 10 to assess the performance of several synchronization 
algorithms with respect to theory. Owing to the much larger signal SNRs involved with frequency 
synthesis, however, the CRB is rarely used in PLL-related synthesis work. The CRB is developed in 
considerable detail in the sections that follow because of its general importance, and its widespread 
applicability to the analysis of many communication system problems. 

 The CR bound provides a lower limit for the error covariance of any unbiased estimator of a 
deterministic parameter θ based on the probability density function of the data observations. The 
data observations are represented here by zk for k = 1, . . ., N, and the probability density of the 
observations is represented by p(z1, z2, . . ., zN) = p(z). When θ represents a single parameter and θ -
hat represents the estimate of the parameter based on the observed data z, the CRB is given by three 
equivalent forms as 
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 (3.46) 

 
The first form of the CR bound in (3.46) can be derived as follows. Since θ -hat is an unbiased 

(zero-mean) estimator of the deterministic parameter θ, it must be true that 
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in which 1 2  . . . Nd dz dz dz=z . Differentiating (3.47) with respect to θ produces the equality 

                                                           
16  See [10]–[14]. 



86 Advanced Phase-Lock Techniques  

 

 { }
2

ˆvar    for all casesob
M
σ≥  (3.62) 

{ }

( )

2

2
0

2

2 2
0

Phase known, amplitude known or unknown

ˆvar
12

Phase  unknown, amplitude known or unknown
b 1

o s

b Q
T

M M

σ

ω
σ



≥ 

 −

 (3.63) 

{ }
( )

2

2
0

2

2 2 2
0

Frequency known, amplitude known or unknown
ˆvar

12
Frequency unknown, amplitude known or unknown

1

o

b M

Q

b M M

σ

θ
σ



≥ 

 −

 (3.64) 

 
In the formulation presented by (3.55), the signal-to-noise ratio ρ is given by ρ = b0

2 / (2σ 2).  
For the present example, the CR bound is given by the top equation in (3.63) and is as shown 

in Figure 3-9 when the initial signal phase θo is known a priori. Usually, the carrier phase θo is not 
known a priori when estimating the signal frequency, however, and the additional unknown 
parameter causes the estimation error variance to be increased, making the variance asymptotically 
4-times larger than when the phase is known a priori. This CR variance bound for this more typical 
unknown signal phase situation is shown in Figure 3-10. 

Beginning with (3.57), a maximum-likelihood17 frequency estimator can be formulated as 
described in Appendix 3A. It is insightful to compare this estimator’s performance with its 
respective CR bound. For simplicity, the initial phase θo is assumed to be random but known a 
priori. The results for M = 80 are shown in Figure 3-11 where the onset of thresholding is apparent 
for ρ ≅ –2 dB. Similar results are shown in Figure 3-12 for M = 160 where the threshold onset has 
been improved to about ρ ≅ –5 dB. 
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Figure 3-9 CR bound18 for frequency estimation error with phase θo known a priori (3.63). 

                                                           
17  See Section 1.4.2. 
18  Book CD:\Ch3\u13000_crb.m. Amplitude known or unknown, frequency unknown, initial phase known. 
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would be measured and displayed on a spectrum analyzer. Having recognized the carrier and 
continuous spectrum portions within (4.65), it is possible to equate29 

 
 ( ) ( ) 2rad /Hzf P fθ≅/  (4.66) 
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Figure 4-17 Resultant two-sided power spectral density from (4.65), and the single-sideband-to-carrier ratio 

�
( f ). 

 
Both /( f ) and Pθ ( f ) are two-sided power spectral densities, being defined for positive as well as 
negative frequencies.  

The use of one-sided versus two-sided power spectral densities is a frequent point of confusion 
in the literature. Some PSDs are formally defined only as a one-sided density. Two-sided power 
spectral densities are used throughout this text (aside from the formal definitions for some quantities 
given in Section 4.6.1) because they naturally occur when the Wiener-Khintchine relationship is 
utilized.  

4.6.1 Phase Noise Spectrum Terminology 

A minimum amount of standardized terminology has been used thus far in this chapter to 
characterize phase noise quantities. In this section, several of the more important formal definitions 
that apply to phase noise are provided. 

A number of papers have been published which discuss phase noise characterization 
fundamentals [34]–[40]. The updated recommendations of the IEEE are provided in [41] and those 
of the CCIR in [42]. A collection of excellent papers is also available in [43].  

In the discussion that follows, the nominal carrier frequency is denoted by νo (Hz) and the 
frequency-offset from the carrier is denoted by f (Hz) which is sometimes also referred to as the 
Fourier frequency. 

One of the most prevalent phase noise spectrum measures used within industry is /( f ) which 
was encountered in the previous section. This important quantity is defined as [44]: 
  

/( f ): The normalized frequency-domain representation of phase fluctuations. It is the ratio 
of the power spectral density in one phase modulation sideband, referred to the carrier 
frequency on a spectral density basis, to the total signal power, at a frequency offset f. The 
units30 for this quantity are Hz–1. The frequency range for f ranges from –νo to ∞. /( f ) is 
therefore a two-sided spectral density and is also called single-sideband phase noise. 

                                                           
29  It implicitly assumed that the units for 

�
( f ), dBc/Hz or rad2/Hz, can be inferred from context. 

30  Also as rad2/Hz. 
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 exp
2i iz p p
α = ∆  

 (4B.10) 

 
A minimum of one filter section per frequency decade is recommended for reasonable accuracy. A 
sample result using this method across four frequency decades using 3 and 5 filter sections is shown 
in Figure 4B-3. 
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Figure 4B-3 1/f noise creation using recursive 1/f 2 filtering method4 with white Gaussian noise. 

 1/f �

 Noise Generation Using Fractional-Differencing Methods 

Hosking [6] was the first to propose the fractional differencing method for generating 1/f α noise. As 
pointed out in [3], this approach resolves many of the problems associated with other generation 
methods. In the continuous-time-domain, the generation of 1/f α noise processes involves the 
application of a nonrealizable filter to a white Gaussian noise source having s–α/2 for its transfer 
function. Since the z-transform equivalent of 1/s is H(z) = (1 – z–1)–1, the fractional digital filter of 
interest here is given by 

 ( )
( ) / 21

1

1
H z

z
α α−

=
−

 (4B.11) 

 
A straightforward power series expansion of the denominator can be used to express the filter as an 
infinite IIR filter response that uses only integer-powers of z as 
 

 ( )

1

1 2

1
2 21  . . .

2 2!
H z z zα

α α
α

−

− −

  −    ≈ − − −
 
  

 (4B.12) 

 
in which the general recursion formula for the polynomial coefficients is given by 

                                                           
4  Book CD:\Ch4\u13070_recursive_flicker_noise.m. 
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Figure 5-9 Strong interfering channels are heterodyned on top of the desired receive channel by local oscillator sideband 
noise. 
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Figure 5-10 Baseband spectra10 caused by reciprocal mixing between a strong interferer that is offset 4B Hz higher in 
frequency than the desired signal and stronger than the desired signal by the dB amounts shown.  
 
The first term in (5.28) 2BLFloor is attributable to the ultimate blocking performance of the receiver 
as discussed in Section 5.3. The resultant output SNR versus input SNR is given by 
 

 
1

21
2

MFX
out

in IQ

SNR
SNR BL

σ
−

 
= + 

  
 (5.29) 

 
It is worthwhile to note that the interfering spectra in Figure 5-10 are not uniform across the 

matched-filter frequency region [–B, B]. Multicarrier modulation like OFDM (see Section 5.6) will 
potentially be affected differently than single-carrier modulation such as QAM (see Section 5.5.3) 
when the interference spectrum is not uniform with respect to frequency. 

The result given by (5.29) is shown for several interfering levels versus receiver input SNR in 
Figure 5-11. 
                                                           
10  Book CD:\Ch5\u13157_rx_desense.m. Lorentzian spectrum parameters: Lo = –90 dBc/Hz,  fc = 75 kHz, LFloor = –160 
dBc/Hz, B = 3.84/2 MHz. 
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of 3° rms phase noise is shown in Figure 5B-8. The tail probability is worse than the exact 
computations shown in Figure 5-17 but the two results otherwise match very well. 
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Figure 5B-6 Channel cutoff rate,7 Ro, for 16-QAM with static phase errors as shown, from (5B.16). 
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Figure 5B-7 Ro for8 16-QAM versus Eb/No for 5° rms phase noise from (5B.18) (to accentuate loss in Ro even at high SNR 
values). 
                                                           
7  Book CD:\Ch5\u13176_rolo.m. 
8  Ibid. 
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required, however, because the offset current will introduce its own shot-current noise contribution, 
and the increased duty-cycle of the charge-pump activity will also introduce additional noise and 
potentially higher reference spurs. Single-bit ∆-Σ modulators are attractive in this respect because 
they lead to the minimum-width phase-error distribution possible. 
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Figure 8-70 Charge-pump (i) dead-zone and (ii) unequal positive versus negative error gain. 
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Figure 8-71 Phase error power spectral density48 for the MASH 2-2 ∆-Σ modulator shown in Figure 8-55 with M = 222, P = 
M/2 + 3,201, and 2% charge-pump gain imbalance. Increased noise floor and discrete spurs are clearly apparent compared to 
Figure 8-56. 
 

Classical random processes theory can be used to provide several useful insights about 
nonlinear phase detector operation. In the case of unequal positive-error versus negative-error phase 
detector gain, the memoryless nonlinearity can be modeled as 

 
 ( )0pd in in inθ φ α φ φ= + >  (8.39) 
 
where α represents the additional gain that is present for positive phase errors.  The instantaneous 
phase error due to the modulator’s internal quantization creates a random phase error sequence that 
can be represented by 
                                                           
48  Book CD:\Ch8\u12735_MASH2_2_nonlinear.m. 
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the sampling-point within each symbol-period after the datalink signal has been fully acquired. In 
the example results that follow, the data source is assumed to be operating at 1 bit-per-second, 
utilizing square-root raised-cosine pulse-shaping with an excess bandwidth parameter β = 0.50 at 
the transmitter. The eye-diagram of the signal at the transmit end is shown in Figure 10-15. The 
ideal matched-filter function in the CDR is closely approximated by an N = 3 Butterworth lowpass 
filter having a –3 dB corner frequency of 0.50 Hz like the filter used in Section 10.4. The resulting 
eye-diagram at the matched-filter output is shown in Figure 10-16 for Eb/No = 25 dB. 
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Figure 10-14 ML-CDR implemented with continuous-time filters based on the timing-error metric given by (10.21). 
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Figure 10-15 Eye diagram15 at the data source output assuming square-root raised-cosine pulse shaping with an excess 
bandwidth parameter β = 0.50. 
 

A clear understanding of the error metric represented by v(t) in Figure 10-14 is vital for  
understanding how the CDR operates. The metric is best described by its S-curve behavior versus 
input Eb/No as shown in Figure 10-17. Each curve is created by setting the noise power spectral 
density No for a specified Eb/No value with Eb = 1, and computing the average of v( kTsym+ ε ) for k = 
[0, K] as the timing-error ε is swept across [0, Tsym]. The slope of each S-curve near the zero-error 
steady-state tracking value determines the linear gain of the metric that is needed to compute the 
closed-loop bandwidth, loop stability margin, and other important quantities. For a given input SNR, 
                                                           
15  Book CD:\Ch10\u14004_ml_cdr.m. 



458 Advanced Phase-Lock Techniques  

 

the corresponding S-curve has only one timing-error value εo for which the error metric value is zero 
and the S-curve slope has the correct polarity. As the gain value changes with input Eb/No, the 
closed-loop parameters will also vary. For large gain variations, the Haggai loop concept explored 
in Section 6.7 may prove advantageous. 
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Figure 10-16 Eye diagram16 at the CDR matched-filter output for Eb/No = 25 dB corresponding to the data source shown in 
Figure 10-15 and using an N = 3 Butterworth lowpass filter with BT = 0.50 for the approximate matched-filter. 
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Figure 10-17 S-curves17 versus Eb/No corresponding to Figure 10-16 and ideal ML-CDR shown in Figure 10-14. Eb = 1 is 
assumed constant. 
 

A second important characteristic of the timing-error metric is its variance versus input Eb/No 
and static timing-error ε. For this present example, this information is shown in Figure 10-18. The 
variance understandably decreases as the input SNR is increased, and as the optimum time-
alignment within each data symbol is approached. The variance of the recovered data clock σclk

2 can 
be closely estimated in terms of the tracking-point voltage-error variance from Figure 10-18 denoted 
by σve

2 (V2), the slope (i.e., gain) of the corresponding S-curve (Kte, V/UI) from Figure 10-17, the 
symbol rate Fsym (= 1/Tsym), and the one-sided closed-loop PLL bandwidth BL (Hz) as 
                                                           
16  Ibid. 
17  Ibid. 


