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Dreaded Interview Questions for Fun 
 

Part I  
 
James A. Crawford 
 
 
 Having reached a sufficient station in life that I 
have either heard most of the typical interview questions 
that might come my own direction, or have the wit and 
nonsense to navigate my way through something that I 
don’t know and talk about the weather or something 
completely unrelated, this on-going collection of 
(technical) interview questions is intended just for fun. I 
encourage any readers to forward me their own most 
favorite technical questions at jk@am1.us. Don’t get 
up-tight though, after all, this is just for fun. 
 

Question #1: What is the equivalent of  jj ? 

 
This is very straight-forward to solve if we first write 

the base j value as 2
j

j e
π

=  based on Euler’s formula. 
Given that substitution, then 
 

 2 2 0.20789
j

j
e e

π π− 
= 

 
�  

 

Question #1B: Corollary to #1 
 

What is the equivalent form of ( )2 ln
j

e j
π

 ? 

 
This is the same as Question #1 except it has been re-
cast in a slightly different form. The progression from 
this form back to Question #1 is given by 
 

( ) ( )

( )

2

2

ln ln

ln ln
2

j

j

e j j j

j e

π

π π−

=

 
= = = − 

 

 

 

Question #2: In honor of Al Thiele 

Solve (x,y) ∈ℜ with x≠y  y xx y=  
 
From this starting point, clearly 
 

 ( ) ( )ln lny x x y=  

 
and 

 ( ) ( )ln ln
y x

y x
=  

 
In order to have a solution with x≠y, the quantity 

( )/ lnz x x=  must be multi-valued along the real 
line. A rough sketch of the solution space can be found 
by collecting a bit more information. 
 Specifically, the slope dz/dx must approach 
infinity as x+ nears unity  because the log function in the 
denominator will blow up. Similarly, a second 
derivative computation shows that the slope dz/dx with 
large x becomes 
 

 
( )
( ) ( )2

ln 1 1
lnln

xdz
as x

dx xx

−
= → → ∞  

 
It is also easy to show from this last equation that 
dz/dx= 0 for x= e.  
 Moving on to a complete solution to the 
problem, we can write 
 

 
( )
( )

ln

ln

y y
c

x x
= =  

 
where c is an auxiliary variable. Solving this equation 
leads to  
 

 cx y=  
 
and substitution of this result back into y/x= c leads to 
 

 
1

1cx c −=  
 
From this result, it is easy to further conclude that 
 

 1
c

cy c −=  
 
The lesson here is to use simple graphical techniques to 
identify the behavior of a solution when possible. A 
picture is worth a thousand words. 
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Question #3: Circuits (tricky) 
In honor of Fritz Weinert 

 
Consider the simple battery plus capacitor circuit below. 
Initially, both (ideal) switches are open and both 
capacitors fully discharged.  
 

C
1 C

2

SW1 SW2

Vbat

V
1

V
2

 
Close switch SW1, and capacitor C1 is charged to 
voltage V1= Vbat. Now open switch SW1. 

 Computing the stored energy in capacitor C1 

results in 2
1

1
2

E C Vbat= . Now close switch SW2 

allowing capacitor C2 to fully charge. Assuming that C2 
= C1, the voltage will be cut in half on both capacitors 
resulting in Vbat/2 on each capacitor. The total energy 
now stored in the two capacitors is 
 

 

2 2

1 2

2 2

1 1

1 1
2 2 2 2

2 4

tot

Vbat Vbat
E C C

Vbat Vbat
C C

   = +      

 = =  

 

 
This all looks reasonable until we realize that the total 
stored energy originally saved in capacitor C1 was 
double this value. Assuming conservation of energy still 
holds, where did the other half of the energy disappear 
to? 
 The simple fact of the matter is that it is 
impossible to have two physically separate capacitors 
and not have some inductance thrown in also! This may 
seem like a trick question, but many a high-end RF 
ASIC design tool may have idealized circuit element 
models involved and the user must be aware of these 
ideal assumptions. If there were just a bit of inductance 
included so that the two capacitors could be connected 
as shown (L), the other half of the energy would reside 
in a sine wave oscillating at a frequency equal to the 
series combination of the two capacitors and L. In this 
(trick) question, the other half of the energy is actually 
present in an infinite-frequency sine wave as L→ 0. 
 
 

Question #4: Phase Noise Spectrum 
 
 Assume that we were looking at the spectrum 
of a radio’ s main local oscillator on a spectrum analyzer 
and we saw this kind of spectrum. Is there anything 
wrong with this spectrum, and if so, what? 
 

RF Frequency

Spectrum
Analyzer View
L(f), dBc/Hz
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 If this is the output of the radio’ s local 
oscillator, it should be constant-envelope in nature. 
Ideally, the noise pedestal shown above should be 
completely symmetric about the carrier if only phase 
noise is present. The asymmetry is a dead give-away 
that the signal contains both AM and PM noise 
components. This is true because AM sidebands are in-
phase at the same frequency offset from the carrier 
whereas PM sidebands are precisely opposite phase at 
the same frequency offset, thereby creating constructive 
combining on one side of the carrier and destructive 
combining on the other. Every valid local oscillator 
spectrum should be symmetric about the carrier center 
frequency. 
 

Question #5: Another Spectrum Question 
 
Assume as in Question #4 that we are looking at the 
local oscillator signal from a radio and we see the 
spectrum below on a spectrum analyzer. The spurious 
signals on both sides are symmetric as shown. What can 
we say about the spurious levels shown? 

RF Frequency

Spectrum
Analyzer View
L(f), dBc/Hz

-16 dBc

-60 dBc

 
 The most obvious question is that if the 
discrete spurious lines are phase-only, why are the 
second harmonic spurious terms so much lower in 
amplitude. If these are truly PM spurs, their levels are 
dictated by Bessel functions per traditional PM/FM 
theory, and it is not possible to have the further-out 
discrete spurious levels this low when the spur levels 
close-in are this high. 
 To first-order, if sinusoidal phase modulation 
with a peak-phase deviation of θ∆ radians and 
frequency fm  is impressed upon the local oscillator 
somehow, the discrete spurious levels at ±fm offset from 
the carrier are given by 
 

 1020
2

L Log dBc
θ∆ ≈   

 

 
where the quantity θ∆ /2 is actually an approximation 
for the J1 Bessel function amplitude. If the discrete spurs 
are really due to PM only and the first discrete spur 
levels have a level of  

 ( )1 10 120L Log J θ = ∆   

 
in general, the nth discrete spur level must have an 
amplitude of 
 

 ( )1020n nL Log J θ = ∆   

 
Using these formula, the level of the first few discrete 
sideband spurs are shown below. As indicated by the 
dotted lines, if the first discrete spur level is at –18 dBc, 
the second discrete spur level must be at about –38 dBc 
if the underlying issue is PM-related spurious. 
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 Coming full-circle then, the discrete spur levels 
shown in the first figure cannot be PM in nature because 
they do not obey these relationships. Neither do they 
appear to be AM and PM related because they are all 
symmetric about the carrier. We are led to conclude that 
these are AM-only spurs due to some kind of signal 
leakage or other undesirable phenomenon happening 
with the local oscillator. 
 

Question #6: Approximating Time Delays 
in Systems 
 
 To first-order, it is very common to 
approximate the Laplace transform of a simple time 
delay as 

 
1

1
se

s
τ

τ
− ≈

+
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but this approximation does not preserve the modulus of 
the original function. A first-order Pade’  approximation 
can be used to improve upon this approximation as 

 
1

2

1
2

s

s

e s
τ

τ

τ
−

−
≈

+
 

It is tempting to take this approach further and use 
higher-order Pade’  approximates given as 
 

 

( )
( )
( ) ( )
( ) ( )

τ τ τ
τ τ

τ τ τ
τ τ τ

− − +
≈

+ +

− + −
≈

+ + +

2

2

2 3

2 3

1 / 2 / 12
2

1 / 2 / 12

1 / 2 / 10 / 120
3

1 / 2 / 10 / 120

s nd

rd

s s
e Order

s s

s s s
Order

s s s

 

 
and higher. Are there any potential difficulties if this 
approximation (with n>2) is used for modeling a system 
with feedback? 
 
 The simple fact of the matter is that the use of 
denominators with n>1 will in many cases introduce 
poles into the open-loop gain transfer function that are 
in the right-half plane thereby introducing potentially 
serious stability issues. If the system includes feedback, 
the feedback may effectively move these unwanted 
right-half plane poles back into the stable left-hand 
plane region, but there are no guarantees! User beware! 
 

Question #7: Quickly compute the Laplace 
transform of the time-domain function below. 

1 2 3 4 5 Time

1

2

3

4

 
 
This is much easier than it might at first seem. First, 
take enough time derivatives of the function until all 
that remain are delta-functions and derivatives of delta 
functions as shown below. After the first time-
derivative, we have the function shown below. 

 

1 2 3 4 5 Time

1

2

3

4F ’

 
 
After taking the second derivative, we have only delta 
functions, and derivatives of delta functions as shown 
below. 
 

1 2 3 4 5 Time

1

2

3

4F ’’

1 1

 
The Laplace transform for this impulse string can be 
written as 
 

 

( ) ( )

( ) ( ) ( ) ( )

2

2

2 3 4

( ) 1

’ 2 3 3 3 4

1 3 3s s s s s

d
L f t L t t

dt

L t t t t

e se e e e

δ δ

δ δ δ δ
− − − − −

 
= − −   

 
+ + − − − + −  

= − + + − +

 

 
Knowing that the two derivatives can be undone in the 
Laplace domain by multiplying this result by s-2, the 
final result is simply given by 
 
 

 ( )
2 2 3 4

2

1 3 3s s s se se e e e
L s

s

− − − − −− + + − +=  

 

Question #8: Numerical Computing 
 

Why might we have problems computing the 
following equation recursively on a computer or digital 
signal processor 
 

1 1n n nx x x+ −= −  
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starting with x0= 1 and x1= 0.61803398? The first few 
computed values for n are shown below: 
 

n xn 
0 1 
1 0.61803 
2 0.38197 
3 0.23607 
4 0.14590 
5 0.09017 
6 0.05573 
7 0.03444 
8 0.02129 
9 0.01316 

 
 A little investigation into this recursion shows 
that the finite difference equation involved has a 
characteristic equation of  
 

 2 1z z− −  
 
The characteristic equation roots are   
 
 ( ) [ ]1 5 / 2 0.61803398,1.61803398± = −  

 
one of which is inside the unit-circle and one which is 
clearly outside. Starting with x1= 0.61803398 (which is 
the stable root) hides the fact that due to finite numerical 
precision in the recursion computation, round-off errors 
are effectively increased by the factor 1.618… for every 
iteration. As a result, the x-values appear to properly 
decay with n, but if larger values of n are computed, the 
recursion blows up. This phenomenon is shown below 
graphically. 
 If a slightly different starting value has been 
used, the unstable root would have made its presence 
known much earlier. 
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 The moral of the story is to always be careful 
about numerical instabilities or round-off problems that 
finite precision may be introducing into a problem. 
Many a digital signal processing algorithm has fallen 
prey to precision problems. Equally true is that some 
algorithms will only work properly when noise is 
present. 
 

Question #9: Stochastic Processes 
 
What kind of stochastic processes satisfy the Weiner-
Khinchine Theorem? 

 
Only wide-sense stationary processes satisfy 

this theorem which states that the power-spectral 
density is the Fourier transform of the process’ s auto-
correlation function. 
 
 

Question #10: Matrices 
 
 If a square matrix is symmetric, what must be 
true of its eigenvalues? If on the other hand, one of the 
eigenvalues is identically equal to zero, what is also true 
of the matrix? 
 
 If the matrix is symmetric, the matrix is called 
a Toeplitz matrix and all of the eigenvalues are real. If 
on the other hand one of the eigenvalues is zero, the 
matrix is singular and not of full rank. 
 

Question 11: Numerical Simulation 
 

What is the bilinear transformation and how is 
it used? 
 
 Many linear systems can be represented in 
terms of Laplace transforms using the differential 
operator s. A convenient way to convert the Laplace 
transform into a finite difference equation (in time) is to 
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use the first-order Pade’  approximation which is given 
by 

 
1

2

1
2

sT

sT

e sT
−

−
≈

+
 

 
After some re-arrangement of terms and letting z= 
exp(sT), this can be transformed into 
 

2 1
1

z
s

T z
−≈
+

 

 
and then substituted back into the Laplace transform for 
each occurrence of s. Viewing z-1 as a simple time-delay 
operator in a sampled control system, the difference 
equation(s) can be easily ascertained. 
 
 

Question #12: Numerical Simulation 
 
 Assume that we need to simulate an AWGN 
noise spectrum with Gaussian statistics for a simulation 
that we wish to run and that the sampling rate for the 
system is assumed to be Fs Hz. How do we proceed? 
 
 The most illuminating way that I have seen to 
look at this problem is to view it as a filtering problem 
coupled with the Nyquist theorem as follows. Assume 
that the AWGN continuous-time noise power spectral 
density is given by No/2 ( a two-sided spectral density). 
With a sampling rate of Fs, we know that all frequencies 
in the system must be limited to Fs/2 per the Nyquist 
criterion. To make this true for the noise also, the 
AWGN noise should be filtered by a brick-wall lowpass 
filter having a corner frequency of Fs/2 as shown below. 
 The power spectral density out of the ideal 
lowpass filter is given by 
 

 ( ) 2
2

o

s

fN
S f rect

F
 

=  
 

 

 
where rect(x)= 1 for |x|1≤ 1. 
 

F

No

2

Fs
2

Fs
2

1

|H(f)|
2

 
Assuming that the process is wide-sense stationary, the 
Weiner-Khinchine theorem can be used to compute the 
autocorrelation function as the Fourier transform of S(f) 
as 

 

( ) ( )

( ) ( )

2
2 2

2

2

sin sin
2 2

s

s

F

j f j fo

F

s so o s

s

N
R S f e df e df

F FN N F
F

π τ π ττ

π τ π τ
πτ π τ

+∞

−∞ −

= =

 = =   

∫ ∫
 

 
It is worthwhile to point out that R(0)= NoFs/2 which is 
the variance of the noise samples at the output of the 
ideal lowpass filter and R(τ)= 0 for all other τ-values 
corresponding to multiples of T= (2Fs)

-1. Fs is the 
Nyquist sampling rate in this case. This latter statement 
implies that all noise samples at the ideal lowpass filter 
output will be uncorrelated as desired. In order to 
simulate the continuous-time system having a flat noise 
power spectral density level of No/2 (2-sided as shown 
above), we only need to use a Gaussian random noise 
source to create samples having a variance of  
 

2

2
o

s

N
F

σ = .  

 

Question #13: Signal Processing 
 
When do Toeplitz matrices appear in signal processing? 
 

One common appearance of Toeplitz matrices 
is in connection with wide-sense stationary random 
processes which have single-parameter autocorrelation 
functions such that ( ) ( )R Rτ τ= − . Such matrices 
have symmetry about the main diagonal with values 
along each diagonal equal. Furthermore, the eigenvalues 
of the matrix are all real.  
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Question #14: DPSK 
  
 Assuming that the local oscillator phase noise 
spectrum is like that shown in Question #5, estimate the 
performance loss due to the phase noise as a function of 
SNR. 
 
 The key point here is that differential PSK is 
being used. We therefore care about the amount of 
phase accumulated over a symbol interval due to the 
phase noise. Assuming a wide-sense stationary phase 
noise spectrum, we can write 
 

( ) ( ){ } ( ) ( )22 2 0E t T t R R Tθ θ θσ θ θ= + − = −      
 
From the Wiener-Khinchine theorem, we also know that 
 

 ( ) ( ) 2j fR S f e dfπ τ
θ θτ

+∞

−∞

= ∫  

This fact can be substituted back to yield 
 

 ( ) ( )2 2

0

8 sinS f f T dfθ θσ π
+∞

= ∫  

by taking advantage of the phase noise spectral 
symmetries involved where T is the modulation symbol 
duration in time.  
 The phase noise is a multiplicative-type of 
noise that results in additional noise proportional to the 
desired signal. As such, the effective SNR including 
phase noise is given approximately by 
 

 
1

21
effSNR

SNR θσ
−

 = +  
 

 
These last two equations provide an avenue to quickly 
estimate the impact of local oscillator phase noise on the 
DPSK system performance. 
 
 

Question #15: BPSK 
 
Provide an argument that shows that local oscillator 
phase noise performance should not be very critical for 
a BPSK system. 

 
One simple argument that can be made is that 

the modulation amounts to multiplying a sine wave by 
effectively ±1 or equivalently on-off keying applied to 
sine wave carriers that are 180 degrees out of phase.  

More rigorously however, we know that the 
BER for uncoded BPSK using coherent demodulation is 
given by 

 

 ( )1
cos

2
b

o

E
BER erfc

N
θ

 
=    

 

 
Since the Taylor series expansion for cos(θ) goes as 
 

 ( )
2

cos 1 ...
2

θθ ≈ − +  

the cosine term is nearly unity unless the phase error 
gets quite large. Equivalently, the phase noise 
performance of the local oscillator would have to be 
quite poor in order to degrade BPSK coherent 
demodulation performance. 
 
 

Question #16: Integration by Parts 
 
 Quickly derive the integration by parts 
formula. 
 
 Assuming that we have the product of two 
variables u and v, the total differential is given by 
 
 ( )d uv u dv v du= +  
 
Taking the first term on the right-hand side to the other 
side of the equation and integrating, we quickly get 
 

 v du uv u dv= −∫ ∫  

 
 

Question #17: State Variables 
 
 Given the Laplace transform system transfer 
function 

 ( )
2

2 22
n

n n

H s
s s

ω
ςω ω

=
+ +

 

 
is this a lowpass or highpass transfer function and why? 
Under what conditions is the system stable? Set up a set 
of state-variable differential equations to solve the 
output versus input time-domain solution. 
 
 The system is unquestionably lowpass because 
it has unity gain at zero frequency, tending to zero gain 
at infinite frequency. 
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 The system is stable so long as the damping 
factor ζ is greater than zero. 
 In order to set up the set of system equations, 
simply start by writing H(s)= Vo(s)/Vi(s) and equate this 
to the transfer function. Then cross-multiply each side 
of the equation to eliminate all of the denominator terms 
and finally divide both sides of the equation through by 
s. The net result is 
 

 
2 2

2 n n
n o is V V

s s
ω ωω ς + + = 

 
 

  
Recalling that (1/s) is equivalent to integration in the 
time domain, after collecting terms, we can write 
 

 
2 2

2n n
o i n o osV V V V

s s
ω ωω ς= − −  

Now let  

( )1 ( )oU t V t dt= ∫  

( )2 ( )iU t V t dt= ∫  

The system of equations can be written as 
 

( ) ( ) ( )

1

2

2 2
2 1

( )

( )

2

o

i

o
n n o n

dU
V t

dt
dU

V t
dt

dV
U t V t U t

dt
ω ω ς ω

=

=

= − −

 

 

Question #18: Lagrange Multipliers 
 
 Use the method of Lagrange multipliers to 
show that the area of a fixed-perimeter (Po) rectangle 
with dimensions L by W is maximized by a square. 
 

 

( )0

2( )

2 0

2 0

A LW

P L W

A P P

d
W

dL
d

L
dW

λ

λ

λ

=
= +

Λ = + −
Λ = + =

Λ = + =

 

 
From this, W=L=-2λ so should be a square. 
 
 
 

Question #19: Noise Bandwidth 
 
 Compute the equivalent noise bandwidth for a 
single-pole lowpass filter, equivalently a first-order 
Butterworth filter. 
 
 The power transfer function for a single-pole 
lowpass filter is given by 
 

 ( ) 2

2

1

1
c

H f
f

F

=
 

+  
 

 

where Fc is the –3 dB corner frequency. Assuming that 
the input noise spectrum is white, the equivalent noise 
bandwidth is computed simply as 
 

 

( )

2

1
2 0

0

1

2 2 tan
1

noise

c

u

c c cu

df
BW

f
F

du
F F u F

u
π

+∞

−∞

+∞
=+∞−
=

=
 

+  
 

= = =
+

∫

∫

 

 
 

Question #20: Math 
 
What are the first few terms of 
 

 ( ) ??na b+ ≈  
 
This is the binomial series and the first few terms are 
therefore 
 

 ( ) 1 2 2( 1)
...

2!
n n n nn n

a b a na b a b− −−+ = + + +  

 
 

Question #21: Math 
 
What are the first few terms of 
 

 
1

??
1 x

≈
+

 

 
Making use of the Taylor series expansion, the first few 
terms of this are 
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( )
2 3

1/ 21 3 15
1 1 ...

2 4 *2! 8 *3!1
x x x

x
x

−= + = − + − +
+

 
 

Question #22: Antennas 
 
What are some of the major assumptions behind the 
antenna gain formula that is commonly used: 
 

 2

4
Ant

A
G

π
λ

=  

The major assumptions are that (i) the aperture 
represented by area A is uniformly illuminated and (ii) 
this is the maximum gain taken to be normal to the 
aperture A. In general, it is very difficult to realize 
antenna gains greater than the value predicted by this 
formula in the case of aperture-type antennas. 
 
 

Question #23: Communications 
 
The bit error rate formula for coherent BPSK is  

 

 
1
2

b

o

E
BER erfc

N

 
=    

 

 
Define the erfc(x) function and provide at least 

one approximation for it. 
 
Erfc(x) is the complementary error function 

which has a precise value given by 
 

 

( ) 2

2

2 2 4 3 6

2

1 1 3 1 3 5
1 ...

2 2 2

t

x

x

erfc x e dt

e
x x xx

π

π

∞
−

−

=

 ≈ − + − +  

∫
< < <

 

 
Wozencraft & Jacobs show that 
 

 ( ) 1
2 2

y
Q y erfc =   

 

and 
 

 ( )
2 2

2 2

2

1
1

2 2

y y

e e
Q y

yy yπ π

− − 
− ≤ ≤ 

 
 

It turns out that the Chernoff bound for the tail 
probability is given by 
 

 [ ]
2

22Pr
t

ob x t e σ
−

≥ ≤  
 
in the case of a mean-zero Gaussian random variable 

with variance 2σ . 
 
 

Question #24: Random Processes 
 
Given a stochastic random variable x and its probability 
density function p(x), define its characteristic function. 
 
 The characteristic function is simply the 
Fourier transform of p(x). 
 
 

Question #25: Math 
 

( )
0

1 1
N

N ii

i

N
p p

i
−

=

 
− = 

 
∑  

 

( ) 2

1

2 1
N

n

n N
=

− =∑  

 

Question #26: Gaussian Random Variables 
 
Assuming that x is a mean-zero Gaussian random 

variable with variance 2σ , what are its first, second, 
third, and fourth-order moments? 
 
 The first moment is the mean and is simply 
zero. The second moment is the variance and is likewise 
already given. The third moment is zero because the 
distribution is symmetric. By using characteristic 
functions, it is possible to show that the fourth-order 

moment is given by 43σ . 
 

Question #27: Leeson’ s Model 
 
What is Leeson’ s model mathematically, and what 
underlying assumptions apply? 

 
Leeson’ s model is used to estimate the phase noise 
spectrum from a free-running oscillator. The single-
sideband phase noise power spectral density is given by 
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where 
 

F= Noise factor 
k= Boltzmann constant 
T= 290 Kelvin 
Po= Power extracted from resonator, W 
Fo= Oscillator center frequency, Hz 
QL= Resonator loaded Q 
f= Frequency offset from carrier, Hz 

 
 

Question #28: Laplace Transforms 
 
Final value theorem for Laplace transforms? 
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Question #29: z-Transforms 
 
Final value theorem for z-transforms? 
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Question #30: Poisson Sum Formula 
 
What is the Poisson Sum Formula? 
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Question #31: Filters 
 
Under what circumstances would it be advisable to use 
a (i) Butterworth filter, (ii) Chebyshev filter, (iii) 
Gaussian filter, (iv) Bessel filter, or (v) elliptic filter? 
 
 Butterworth filters are maximally-flat at f=0, 
rolling off to –3 dB at the corner frequency. The poles 
are equally distributed around a circle in the s-plane. 
 Chebyshev filters are equi-ripple in the 
passband. Although the amplitude remains close to 
unity across the passband, the group-delay 
characteristics are more extreme than the Butterworth 
filter. This is particularly true for filter orders greater 
than 3. Chebyshev poles lie on an ellipse in the s-plane 

and as such the quality factor of the poles is higher than 
those of the Butterworth family. 
 Gaussian filters are also called transitional 
filters. There are Gaussian “to 6 dB” filters and 
Gaussian “to 12 dB” filters, etc. A completely Gaussian 
shaped filter response is physically not realizable with 
passive capacitors and inductors because it does not 
satisfy the Paley-Wiener condition. These filters are 
attractive because of their very benign nonlinear group 
delay characteristics as compared to Butterworth or 
Chebyshev filters, historically finding widespread use  
in radar systems where flat group delay is important.  
 Bessel filters have a maximally-flat group 
delay characteristic. Their attenuation characteristics are 
not very selective, certainly compared to Butterworth or 
Chebyshev filters, but their group delay characteristics 
are excellent. 
 The elliptic filter is the only filter type listed 
that has both poles and zeros in its transfer function. 
This filter type delivers equi-ripple passband and 
stopband attenuation performance, and exhibits the 
fastest possible transition characteristic between 
passband and stopband of the filters listed. In exchange 
for the exceptionally fast transition region performance 
region possible, group-delay characteristics are quite 
nonlinear near the corner frequency. 
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