
 Coaxial Line and 50 Ohms 1 

 2004 James A. Crawford 

Coaxial Line and 50 Ohms 
 
 
James A. Crawford 
 
 

1. Introduction 
 

If you have ever wondered why standard 
coaxial cable has a characteristic impedance of 50 
ohms, you have come to the right place. In this brief 
memo, we will see that this is a direct consequence of 
the fact that most coaxial cable is made using copper 
conductors. 

 

2. Getting Started 
 
In the discussion that follows, it will be 

assumed that the coaxial line in question has a perfect 
lossless dielectric with a relative permittivity1 of 
2.25.  The only losses present in the cable are then 
conductive losses due to the copper center conductor 
and shield of the coax line. Since the dielectric is 
assumed to be lossless, the distributed conductance G 
is zero. It can be shown that loss through the coax 
line can be minimized for a particular choice of 
characteristic impedance Zo. The related loss is 
characterized by the real part of the propagation 
constant, α. 

Maxwell’s equations can be used to obtain 
expressions for the distributed inductance and 
capacitance of the coaxial line.  

 

Figure 1 Coaxial Line Dimensions 
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For a static current I flowing in the center conductor, 
the magnetic field can be easily calculated from 
 
                                                           
1 Relative dielectric constant of polypropylene, a 
popular low-cost coaxial dielectric material 
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The inductance per unit length can be calculated as 
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For the capacitance per unit length, we know that 
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and 
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The latter equation combined with the symmetries 
present in the coaxial cable result in 
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We also know that 
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Using this result in (4) results in the distributed 
capacitance being given by 
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 The complex propagation constant is given 
by2 
                                                           
2  E.C. Jordan, K.G. Balmain, , Electromagnetic 
Waves and Radiating Systems, 2nd Edition, 1968, 
Prentice-Hall, Equ. (7-110) 
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which simplifies in the lossless dielectric case to 
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The resistance per unit length of copper is given as a 
function of frequency f by 
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and with /Z L C= , upon substitution the final 
result for α is 
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 As clearly shown in (12), the minimization 
of α comes down to choices for the radii a and b, 
specifically the ratio of the two parameters. In order 
to minimize α, assume that we arbitrarily set b=1.0 
and set the derivative of α with respect to a equal to 
zero. In doing so, let 
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From this form, 
 

 

( )

( )
2

2

ln 1 11
0

ln

a
dK a a a
da a

 + + 
 = =

  
 (14) 

 
Clearly, it must be true that 0 < a < 1, and a must 
satisfy the equation 
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The value of a that satisfies this final constraint is 
0.278465 or equivalently, b/a= 3.591156 and 
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in the case where εr= 2.25. Fortunately, the loss is not 
a strong function of the ratio b/a and it suffices to 
choose the convenient value 3.5 which leads to a 
characteristic impedance value of 50.11 ≈ 50 Ohms. 
Alpha and the characteristic impedance are plotted 
versus the ratio b/a in Figure 2. 
 

Figure 2 Coaxial Parameters Versus (b/a) at 600 
MHz 
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