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Substantiation of the Water Filling Theorem Using Lagrange Multipliers 

 
 

Shannon’s capacity theorem states that in the case of N parallel statistically independent 
Gaussian channels that the channel capacity C is given by 
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where B is the bandwidth per channel in Hz, and  En and  σn2 are the energy per symbol and  noise 
variance per symbol respectively. We want to find  the best allocation of transmit power in order to 
maximize C under the maximum power constraint that 
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The Lagrange Multiplier solution method is given by the following rule1: 
 
In order to determine the extreme values of a continuously differentiable function f(x1, x2, …, xn) 
whose variables are subjected  to m continuously d ifferentiable constraining relations given as 
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and  determine the parameters i and  the values of xk from the n equations 
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and  the m equations given by (3). 
 
The objective function that we wish to find  the extremum of is then given by 
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Differentiating (6) with respect to En results in  
 
                                                      
1  I.S., Sokolnikoff, R.M. Redheffer, Mathemat ics of Physics and Modern Engineering, McGraw-Hill Book, 1966 
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from which we obtain the requirement that 
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for any (positive) FKRLFH� RI� FRQVWDQW� ’ for all n which means that En + σn2 = µ a constant for all n 
thereby provid ing us the classical “water filling” criteria for maximizing the system capacity. Since it 
is not possible to have a negative value for En, the minimum allowable value for µ  is the maximum 
value of the σn2. Substituting this result into the capacity formula, we find  that 
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Parallel Gaussian BPSK Channels 
 
 

Now assume that we have N parallel Gaussian channels each supporting uncoded BPSK, and 
we wish to minimize the overall average bit error rate (BER) subject to the same total power 
constraint as used  above.  The average BER is given by 
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and  the total power constraint is given again by 
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Employing the Lagrange multiplier method, the objective function that we seek the extremum values 
for is given by 
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Differentiating (12) with respect to En and  setting the derivatives to zero results in the criteria that 
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which is obviously a transcendental equation in En which must be satisfied  for all n given a constant 
SDUDPHWHU� � This equation can be rearranged to given En in terms of the other parameters as 
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A non-transcendental result can be obtained if we use the Chernoff bound expression for BER 

rather than the exact form. In this case, the objective function involved  is given by 
 

(15) 2
1 1

1
exp

2

N N
n

n T
n nn

E
E E

N
λ

σ= =

   Λ = − + −     
∑ ∑  

 
Upon taking derivatives of (15) and  setting them to zero, the relationship for extremum values that 
results is given by 
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It is interesting to compare the results for En using the exact result found by solving (13) and 

the non-transcendental result provided  by (16).  An example case is shown in the Mathcad  worksheet 
that follows2. 

 
 
 
 

                                                      
2  U10333 Minimize Ave BER on Parallel Faded  Channels.mcd  
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