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Abstract 
 
 Many recently published accounts that 
compare wireless local area network (WLAN) 
performance between 2.4 GHz and 5 GHz systems 
make many claims regarding higher propagation 
losses at 5 GHz as compared to 2.4 GHz. While it is 
true that Friis’ formula dictates that propagation 
losses will be 20Log10( 5.25/2.4 ) ≅ 6.8 dB higher at 5 
GHz in the case of isotropic transmit and receive 
antennas, propagation losses through most building 
and home-construction materials are almost the same 
for both frequency regimes. 
 An extensive materials-loss measurement 
program was recently conducted at the University of 
Southern California (USC) under contract with Magis 
Networks.  The program investigated propagation 
loss using USC’s large on-campus anechoic chamber.  
This report documents the measurement techniques 
used and the results obtained. Aside from large 
cement blocks and red bricks that displayed 
somewhat more loss at 5 GHz than at 2.4 GHz (Table 
3), losses for all other materials tested were very much 
the same in both frequency regimes. 
 
1. Measurement Goals 
 
 The experiment described in the following 
pages was performed to investigate RF propagation 
through different common building materials over a 
range of frequencies.  More specifically, to make a 
comparison between the transmitted, reflected, and 
absorbed energy in two frequency bands, the 2.2 – 2.4 
GHz ISM and the 5.15-5.35 GHz UNII bands.  Both 
bands are specified for use in WLAN systems in the 
IEEE 802.11 standards. 
 
2. Prior Work 
 
 Materials characterization experiments fall 
into two categories.  The first category is tests 
performed on composite materials, either in-situ 
within buildings or custom built in the laboratory, 
with the purpose of determining and modeling losses 
through typical structures.  These are consistently 
free-space tests, which are generally performed with 
standard gain horn antennas.  Examples of materials 
tested in a laboratory setting are glass, limestone, and 
brick walls [1], concrete walls [2], and metal stud 

walls with gypsum board [3].  In-situ tests have been 
performed for building floors [4], as well as exterior 
[5] and interior [6,7] walls. 
 The second type of tests are those performed 
on homogenous materials, with the aim of 
determining the precise complex permittivity of the 
material, which can then be used in the calculation of 
the theoretical loss through any composite.  A number 
of techniques have been developed, the most common 
determine complex permittivity from measured 
scattering parameters when the sample is placed in 
the path of an electromagnetic wave traveling in a 
waveguide, coaxial line [8,9], or free space 
[10,11,12,13,14,15].  The technique used to measure the 
RF energy varies depending on the type of material 
and frequency range under consideration.  An 
overview of different techniques can be found in 
[16,17,18] and a comparison of techniques in [19]. 
 
3. EM Testing 
 
 Many models have been developed for waves 
propagating through structures and materials, both 
homogenous [8,9]  and composite [2,3].  Sophisticated 
models for homogenous materials use internal multi-
reflection models and can determine the relative 
permittivity of the material within a fraction of a 
percent [9], while models for composite materials take 
into account the optical grating effects of periodic 
structures such as concrete blocks with webs and 
voids, and interior walls with steel supporting studs 
[20].  A first order approach to permittivity estimation 
is taken here, using the dual assumptions of a planar 
incident wave and infinite plane-parallel dielectric 
material.  Moreover, the permittivity is assumed to be 
constant over the observed frequency range.  For 
composite structures an estimate of the effective 
relative permittivity of the composite is made, 
although the equations governing the behavior of 
waves in composite structures are more complex than 
for homogeneous material. 
 

3.1 Electromagnetic Waves and Dielectric 
Materials 

 
 The solution to the wave equations for a 
transverse electromagnetic wave result in the 
following descriptions for the field components of an 
electromagnetic wave traveling in a homogenous 
medium of impedance Z at time t and at a point in 
space z [10], 
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is the angular frequency of the wave, c is the speed of 
light, rr εµ ~,~ are the relative permeability and 

permittivity of the medium respectively, and 00 ,εµ  
are the dielectric constant and magnetic permeability 
of a vacuum. 
 For the remainder of this report we will 
assume the use of non-magnetic materials, i.e., 

1~ =rµ , therefore the phase and attenuation of an 
electromagnetic wave passing through a homogenous 
dielectric material in free space are fully determined 
by their complex permittivity.  The complex 
permittivity can be written as, 
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εε  where  σ is the 

conductivity of the material, and  tan ∂ is known as 
the loss tangent.  If 0=σ , then γ  is purely real and 
the wave undergoes only a phase shift and no 
attenuation as it passes through the material. 
 

3.2 Scattering Parameters 
 
 Any two port system can be modeled by 4 
complex scattering parameters, which are functions of 
the incident and reflected voltages at each port, refer 
to Figure 1. 
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Figure 1: Two-Port Network 
 
The Automatic Network Analyzer (ANA) measures 
these complex scattering parameters, giving the 
relationship between input and output electric fields,  
from which we can calculate directly the transmitted 
and reflected power of the network. 
 

3.3 Determination of Relative Permittivity 
  
 For measuring the scattering parameters of a 
dielectric material in free space, we can use the 
equations in this section to calculate the relative 
permittivity of the material, assuming a planar 
incident wavefront and an infinite plane-parallel plate 
dielectric slab.  Imposing boundary conditions at the 
interface of the dielectric material, that is, that the 
tangential components of the electric and magnetic 
fields must be continuous, we get a system of 
equations relating the transmission and reflection 
coefficients of the system, the electric fields, and the 
dielectric properties of the material.  Referring to 
Figure 2, we have: 

E       =    Einc 0

E       =    R    E
refl 0      inc

Y

Z

0

0

Y

Z

0

0

Y

Z

1

1

0 d  
Figure 2: Electric Field Components for a Plane 
Electromagnetic Wave Incident on an Infinite Plane 
Dielectric Slab in Free-Space 
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complex relative permittivity of medium “i” and Zi is 
the impedance of medium “i”.  The solutions in R0 and 
T0 for this system of equations are given by [10]: 
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The power transmission and reflection coefficients are 
then given by 
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and 1=++ ART , where A is the power coefficient 
of absorption. 
 
4. Measurement Technique 
 

All measurements were performed in the 
anechoic chamber facility at USC, eliminating 
interference from outside sources and minimizing 
multipath reflections.  The antennas were a pair of 
ETS·Lindgren 3115 double-ridged guided horns, with 
stated bandwidth of 1-18 GHz.  The test setup was 
similar to that used in [11], but scaled to suit the lower 
frequencies under consideration here.  The setup 
consisted of an antenna in the “quiet zone” at each 
end of the chamber, 16 feet apart, with the sample 
holder 30 inches from the transmit antenna.  The 
sample holder was a 4’x4’ frame of signal absorbing 
material (SAM) facing the transmitter, with a 17”x17” 
square cut in the center, corresponding to 2.9 
wavelengths at 2GHz.  The SAM frame is designed to 
minimize diffraction around the sample.  See Figure 3 
for a schematic diagram of the set-up, and Figures 4, 
5, and 6 for photographs.  
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Figure 3: Measurement Setup 
 
 An HP8720D Network Analyzer (ANA) was 
used to measure the scattering parameters with each 
material in the sample window, with the transmit 
antenna connected to port 2, and the receive antenna 
to port 1.  The ANA was set up to sweep from 1 – 12 
GHz in 801 steps, using an IF bandwidth of 30 kHz, 
and averaging over 4 sweeps to reduce noise.  The 
frequency range was restricted by the antenna gain at 
the low end and the capabilities of the feeding cables 
at the high end.  In fact, in the analysis in the next 
section, only data up to 7GHz was deemed to be 
reliable.  Calibration was performed at the connection 
points with the antennas, so the measured scattering 
parameters are those of the cascaded network of 
antennas and propagation path, where the 
propagation path might include any or all of: line-of-
sight propagation through the material, diffraction at 
the outside edges of frame and inside edges of sample 
window, other multipath components reflected from 
the test rig, and other objects in the chamber.  
 
Figure 4: Transmit Antenna, Absorbing Frame and 
Copper Reference Plate in Frame Window 
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Figure 5: Test Rig and Receive Antenna 

 
 
 
Figure 6: Sample Holder Test Rig and Transmit 
Antenna 

 
 
 Two reference measurements were made, one 
with the sample holder empty and one with a plate of 
copper in the sample window, which were followed 
by the measurement of all other materials.  In the data 
analysis section below, the reference measurements 
are used under some invariance assumptions to 
isolate the line-of-sight through material propagation 
path from the other unwanted components of the 
scattering parameter measurements. 

An important parameter in the theoretical 
model of Section 3 is the thickness of the sample 
under test.  The thickness of all samples was 
measured using digital calipers or a micrometer. 

 
5. Analysis Method 
  

As mentioned above, the data measured by 
the ANA is the scattering parameters of the cascaded 
network between antenna connection points.  To 
calculate the scattering parameters of the sample alone 
we need to remove the effect of the antennas and any 
unwanted propagation paths from the measurement.  
We can effect this removal by using a combination of 
subtraction of the reference measurements and time 
domain gating. 

If the scattering parameter of interest is 
considered as a frequency domain transfer function 
between two voltages, by taking the IFFT of the 
gathered frequency data we get the effective “impulse 
response” of that function. 
 

)(*)()()( twtxfWfX ↔    (6) 
 
where X(f) is the infinite frequency transfer function, 
W(f) is some window with amplitude zero outside of 
the observed frequency range, { })()( 1 fXtx −ℑ=  

and { })()( 1 fWtw −ℑ=  are inverse Fourier 
transforms of their respective capitalized frequency 
functions, and “*” denotes convolution.  x(t) is the true 
impulse response of the function under consideration, 
but we observe only the convolution of it with the 
function w(t).  The width of w(t) will determine the 
resolution with which we can distinguish discrete 
events in the time domain – for example in S22 
between reflection at the antenna and reflection from 
the dielectric material.  The width of w(t) is inversely 
proportional to the width of W(f), therefore it is 
desirable to observe as wide a frequency range as 
possible.  Given the time domain “impulse” response 
of the parameter, we can compare the response of the 
material under test to the response of the two 
reference measurements – the empty frame and the 
copper plate.  The first 10ns of the reflection 
parameter impulse response for the copper plate are 
shown overlaid on the response for the empty frame 
in Figure 7, and the equivalent plot for 7mm plexiglass 
is shown in Figure 8.  A rectangular W(f) was used.  
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Figure 7: Time Domain Reflection Response on 
the Copper Place Compared to an Empty 
Sample Window 

 
 
Figure 8: Time Domain Reflection Response 
of Plexiglass Compared to an Empty 
Sample Window 

 
In these plots the reflection due to the sample 

is clearly distinguishable from the reflections due to 
the cable-antenna and antenna-air mismatch, the latter 
remaining constant in each measurement.  Isolating 
this reflection from the other events and transforming 
it back into the frequency domain is done in three 
steps.  First, the baseline time domain response of the 
empty frame is subtracted from the response of the 
sample under test, as a first pass attempt to remove 
unwanted reflections.  Second, performance is 
improved by subsequently multiplying the resulting 
response by a time window that is zero outside of the 
region where the sample response is observed to 
deviate significantly from the baseline response, thus 
entirely eliminating those reflections sufficiently 
removed in time from the reflection due to the sample.   
Finally, an FFT of the resulting baseline-removed, 

time-windowed response is taken to get the frequency 
response of the isolated sample.  Mathematically, 

( )[ ]
( )[ ] )(*)()()()(

)()(*)()()(
fGfWfBfXfY

tgtwtbtxty
−=

−=
 (7) 

 
where b(t)*w(t) is the baseline empty frame response 
and g(t) is the time domain window function.  From 
Equation (3) we see that to minimize distortion in the 
frequency domain we should choose W(f) to be 
rectangular and g(t) to be some shape that minimizes 
ringing in the frequency domain. A Hamming 
window was chosen for g(t).  The duration of g(t) was 
chosen to be just long enough to fully include the time 
domain response of the copper plate, specifically from 
the 630th to the 880th time domain sample.  Because 
multiplication by a window in the time domain results 
in convolution by a window in the frequency domain, 
the effective result is averaging over frequency.  This 
introduces some edge effects into the frequency 
domain data where the window begins to extend 
beyond the range of frequency data, reducing the 
useful frequency range. 

A similar procedure was used for the 
transmission measurement, except there was no 
baseline measurement for the S12 data, i.e., no 
measurement of the isolation between ports 1 and 2.  
The greater propagation distances involved in an S12 
measurement result in lower amplitudes and greater 
time separation for waves arriving by non-direct 
propagation paths, therefore a baseline is at the least 
less important for this case and can, in fact, increase 
measurement error if insufficient noise averaging is 
performed [21]. 

  These procedures remove all unwanted 
propagation paths from the observation, but the 
remaining data still includes filtering due to the 
antennas and free space propagation, as well as 
reflection/transmission at the sample.  To obtain the 
response of the sample alone, we divide by the 
response of the empty frame or copper plate for the 
transmission and reflection data, respectively.  In this 
way, the empty frame is defined to have a 
transmission coefficient of 1, the copper plate to have 
reflection coefficient of 1, and the coefficients of all 
other samples are determined relative to these.  
Finally, because the transmission, reflection, and 
absorption coefficients must sum to 1, we can 
determine the absorption from the two calculated 
parameters. 
 To verify the obtained frequency curves for 
each material, we use the models relating scattering 
parameters to relative permittivity and loss tangent 
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described in Section 3.  By finding the value of 
complex permittivity that best fits the curve of the 
transmission parameter, in a mean square error sense, 
we can check that the shape of the obtained curve fits 
the physical model of the system, and compare the 
obtained complex permittivity to reference values in 
the literature. 
 

5.1 Sources of Error 
 

There are many points in the measurement 
and analysis where error can enter the data, although 
every effort is made to minimize such error.  In the 
measurement of data, the most significant source of 
potential error is the test rig itself.  The substructure of 
the rig is made from PVC, which will bend under 
weight and even sag under its own weight over a 
period of time, particularly when there are many 
joints in the structure.  The result being that the 
position of sequential samples may not be exactly the 
same relative to the antennas being used to measure 
them.  In addition, the test rig is not firmly attached to 
the ground, and is therefore susceptible to accidental 
movement in the placing and removal of sample 
specimens. 

There is also the question of transmitted 
energy due to diffraction around the sample. In 
several cases the unusual shape of the specimen made 
it difficult to ensure that the test material was in 
contact with the back of the frame on all sides, 
allowing the possibility of significant wave 
propagation around the sample.  For materials where 
the sample was constructed from a number of un-
bonded pieces, specifically the red brick, cinder block, 
fiberglass, and 2x12 Fir lumber, there is also the 
possibility of wave propagation through the air gaps 
between pieces. 

The test rig was placed close to the transmit 
antenna in order to minimize distortion to the incident 
wave due to blockage of the Fresnel zone, i.e., 
minimizing the effect of wave diffraction as it passes 
through the window.  However, the close proximity 
makes it more difficult to isolate the reflected signal 
due to the sample from the reflection due to the 
antenna.  Furthermore, the incident wave less closely 
approximates a plane wave at the sample interface 
than if the antenna - sample separation was greater.  
The plane wave approximation is important when 
comparing results to the theoretical model of Section 
3. 

We attempt to remove the unwanted artifacts, 
such as antenna reflection, from the raw data by 
subtracting the baseline measurement, and then 

multiplying by a time window.  Subtracting the 
baseline measurement assumes that the response of 
the system within the window is time-invariant, 
except for the response due to the sample.  However, 
there will be some variation due to potential 
movement of the test rig, as described above, and 
variations that occur due to non-ideal cables and 
connectors in the test setup.  Windowing the data will 
unavoidably include some of the residual baseline 
variations and/or exclude the vestiges of the desired 
data.  The reflection parameter data in particular was 
observed to be sensitive to the choice of window. 

Division by the reference measurements to 
determine the relative coefficients implicitly assumes 
the network behaves linearly.  That is, it assumes that 
the combined effect of the antennas, free-space 
propagation, and reflection at the sample can be 
described as a time-invariant multiplication by a 
complex gain function.  This is, however, considered 
to be a reasonable assumption. 
 Finally, the samples were generally not of 
uniform thickness.  The measured values described 
below and used in the model are either sample, or 
average thicknesses of the materials. 
 
5.2 Results 
 

Data was measured from 1 – 12GHz, however, 
because of edge effects due to time domain 
windowing, and lack of reliability due to cable losses 
at higher frequencies, results are only reported for the 
frequency range 2 – 7GHz. 
 The list of materials considered is given in.  
The first material tested was the 7.1mm plexiglass, the 
relative permittivity of which is known to be stable 
over frequency and well reported in the literature.  
Plots of the power transmission, reflection, and 
absorption coefficients are shown in Figure 10. Note 
that the theoretical curves for the transmission 
coefficient match the observed value more closely 
than those for the reflection coefficient, this is typical 
for all the materials and is due to a number of factors.  
Based on the equations in Section 3, it is possible to 
estimate the relative permittivity of the material under 
test using either the measured transmission or 
reflection coefficient.  In general, using the 
transmission coefficient to find relative permittivity 
was found to provide a better subsequent match to the 
reflection coefficient curve than vice versa, therefore 
this was the method was used. Naturally, the match to 
the curve on which the estimate was based is better.  
In [19] it is suggested that use of the reflection 
coefficient would be the optimal choice for high-loss 
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materials, which we are not generally dealing with 
here.  Also, the value of the S22 is up to an order of 
magnitude smaller than S12, resulting in an increased 
fractional variation due to observation and processing 
noise.  The absorption coefficient is generally an order 
of magnitude smaller again, resulting in even more 
variation in that curve.  Missing data in the absorption 
curve indicates calculated absorption of zero. 

Table 1: Materials Under Test 

 
It is important to note that the estimate of relative 
permittivity was chosen to provide the best fit across 

the frequency range, whereas in reality the 
permittivity of many materials is a function of 
frequency.  This can have significant effect on the 
closeness of the fit between the measured and 
estimated curves. 

The calculated value of relative permittivity 
and loss tangent for each material, and a comparative 
reference value are shown in Table 2 on the next 
page. 

 
Table 2: Relative Permittivities and Loss 
Tangents 
Material Est. 

er 
Est. 
tand 

Reported 
er 

Reported 
tand 

Ref. 

Plexiglass 
(7.1mm) 

2.74 3.20E-
04 

2.59 
 

57e-4 [10] 

Plexiglass 
(2.5mm) 

2.50 9.37E-
03 

2.59 57e-4 [10] 

Blinds 
(closed) 3.49 

5.96E-
05 

   

Blinds 
(open) 1.96 

5.96E-
05 

   

Red brick 
(dry) 5.86 

1.16E-
01 

   

Red brick 
(wet) 5.92 

1.17E-
01 

   

Carpet 
(back) 1.31 

6.69E-
04 

   

Carpet 
(weave) 1.32 

5.96E-
05 

   

Ceiling tile  
1.32 

1.44E-
02 

   

Fabric 
1.49 

5.96E-
05 

   

Fiberglass 
1.02 

9.21E-
04 

3.9 0.026 [10] 

Glass 
6.38 

2.60E-
02 

4.05 0.0106 [22] 

Drywall 
(12.8mm) 2.19 

1.11E-
02 

   

Drywall 
(9mm) 2.49 

4.25E-
03 

   

Light 
cover 
(front) 1.66 

6.88E-
03 

   

Light 
cover 
(back) 1.64 

1.19E-
02 

   

Linoleum 
(back) 3.04 

6.31E-
05 

   

Linoleum 
(front) 3.08 

1.45E-
03 

   

Fir 
2.58 

2.00E-
01 

1.7-3.8 0.022-0.26 [23] 

Particle 
Board 2.70 

1.10E-
01 

2.7-3.07 0.07-0.09 [23] 

Plywood 
2.47 

1.27E-
01 

1.7 0.036 [22] 

Stucco 
(back) 7.30 

4.45E-
01 

   

Stucco 1.07 4.29E-    

Material Comments 
Plexiglass  7.1mm and 2.5mm thicknesses tested 
Blinds  Mini-blinds, slats 25mm wide, 0.5mm thick.  

22mm openings. 
Red brick  Each brick approx. 203mm (w) x 51mm (h) x 

102mm (d).  17 stacked. 
Carpet  Cheapest available, 7.75mm thick 
Ceiling tile  Typical of false ceilings in office buildings.  

14.7mm thick. 
Fabric Heaviest available upholstery, 1.13mm 

thick. 
Fiberglass R-13 for interior and exterior walls in warm 

climates, 890mm thick. 
Glass Window glass, 2.5mm thick. 
Drywall  Nominally 12.8mm and 9mm, thinner 

sample varied from 8.5mm to 9.9mm over 
sample. 

Light 
cover  

For fluorescent light bays in office buildings, 
approx 0.5mm wide diamond corrugations,  
thickness varies between 2.3 – 2.7mm over 
corrugations. 

Linoleum  Cheapest available, 1.61mm thick. 
Fir lumber Two boards stacked vertically.  E-field 

perpendicular to grain, 37.7mm thick. 
Particle 
Board 

19mm thick 

Plywood 5 sheet plywood, total thickness 18.28 – 
18.45mm over sample. 

Tiles Tiles were approx. 10.8 x 10.8 x 7.3 mm, 
glued to 12.8mm drywall with gaps grouted.  
Total thickness approx 21.2mm 

Tar paper 1.7mm thick. 
Cinder 
block  

Blocks approx. 406mm (w) x  203mm (h) x 
194mm (d) outside dimensions, construction 
is 4 exterior “walls” and 1 cross member 
bisecting widest dimension, wall thickness 
31-35mm.  Three vertically stacked. 

Diamond 
mesh 

5mm wide “v”-shaped ribs every 25mm, 8 
“diamonds” between them.  Diamonds 
approx. 13mm x 6mm.  E-field perpendicular 
to ribs.  Rib “v” depth 8.5mm, metal 
thickness 2mm. 

Stucco Concrete poured on diamond mesh.  
Orientation as above.  Total thickness 
25.75mm. 

Wire lath  51mm x 51mm spaced lattice of 16 gauge 
wire (1.56mm), paper backed (0.95mm). 
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Material Est. 
er 

Est. 
tand 

Reported 
er 

Reported 
tand 

Ref. 

(front) 01 
Tiles 

3.08 
5.88E-

02 
   

Tar paper 
2.47 

3.86E-
02 

   

 

 

 
Figure 10: Transmission, Reflection and Absorption 
Coefficients for 7.1mm Plexiglass 
 
 For the wood products, the parameters are a 
strong function of moisture content and a range of 
reference values for 0-30% moisture content is given.  
For materials tested in more than one orientation, the 
side indicated in brackets () is the side facing the 
transmit antenna. 
 In Table 3, the transmission and reflection 
coefficient of each material is given at 2.3GHz and 
5.25GHz, along with the center frequencies of each 

band of interest, and the difference in coefficient 
between frequencies. 
 
Table 3: Transmission and Reflection 
Coefficients at 2.3GHz and 5.25GHz 
Material T (dB) R (dB) 

 2.3 
GHz 

5.25 
GHz 

D 2.3 
GHz 

5.25 
GHz 

D 

Plexiglass 
(7.1mm) -0.3560 -0.9267 0.5707 -12.23 -5.65 -6.5753 
Plexiglass 
(2.5mm) -0.0046 -0.2041 0.1994 -21.69 

-
13.25 -8.4470 

Blinds 
(closed) -0.0016 0.0020 -0.0035 -30.97 

-
20.39 -10.578 

Blinds 
(open) 0.0137 0.0315 -0.0178 -44.23 

-
46.95 2.7210 

Red brick 
(dry) -4.4349 -14.621 10.186 -12.53 -8.98 -3.5459 
Red brick 
(wet) -4.5119 -14.599 10.087 -12.52 -9.41 -3.1185 
Carpet 
(back) -0.0361 -0.0318 -0.0044 -25.19 -15.8 -9.4080 
Carpet 
(weave) -0.0271 -0.0056 -0.0214 -26.94 -18.7 -8.2710 
Ceiling 
tile  -0.0872 -0.1795 0.0923 -21.07 -18.7 -2.3470 
Fabric 0.0216 0.0133 0.0083 -41.70 -30.1 -11.570 
Fiberglas
s -0.0241 -0.0340 0.0099 -39.40 -28.8 -10.581 
Glass -0.4998 -1.6906 1.1908 -11.29 -4.9 -6.3446 
Drywall 
(12.8mm) -0.4937 -0.5149 0.0211 -12.11 -11.5 -0.6390 
Drywall 
(9mm) -0.5095 -0.8470 0.3376 -12.03 -8.87 -3.1596 
Light 
cover 
(front) -0.0040 -0.0533 0.0494 -28.47 -20.0 -8.4490 
Light 
cover 
(back) -0.0070 -0.0532 0.0462 -28.07 -18.8 -9.2390 
Linoleum 
(back) -0.0186 -0.1164 0.0977 -26.05 -17.3 -8.7610 
Linoleum 
(front) -0.0198 -0.1278 0.1081 -23.69 -16.0 -7.6690 
Fir 
lumber -2.7889 -6.1253 3.3364 -17.45 -14.8 -2.6890 
Particle 
Board -1.6511 -1.9508 0.2997 -8.59 -14.1 5.5359 
Plywood -1.9138 -1.8337 -0.0801 -9.05 -30.5 21.422 
Stucco 
(back) -14.582 -13.906 -0.6760 0.62 0.04 0.5785 
Stucco 
(front) -14.863 -13.235 -1.6280 -2.38 -9.24 6.8587 
Tiles -2.2163 -1.4217 -0.7946 -6.24 -14.9 8.6093 
Tar paper -0.0956 -0.1341 0.0385 -28.88 -17.8 -11.067 
Cinder 
block 
(dry) -6.7141 -10.326 3.6119 -7.67 -6.13 -1.5324 
Cinder 
block 
(wet) -7.3527 -12.384 5.0313 -5.05 -7.55 2.5080 
Diamond 
mesh -20.985 -13.165 -7.8200 -0.53 0.89 -1.4216 
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Material T (dB) R (dB) 
 2.3 

GHz 
5.25 
GHz 

D 2.3 
GHz 

5.25 
GHz 

D 

Wire lath 
(paper) -1.2072 -0.7044 -0.5028 -6.38 -10.9 4.6015 
Wire lath 
(wire) -1.2136 -0.3404 -0.8732 -8.01 -21.8 13.764 
 
 Plots of T,R and A for some materials are 
presented below, the remainder can be found in the 
Appendix. 
 Plots for the bricks are shown in Figure 11.  
The bricks showed a linear increase (in dB) in 
absorption over frequency, with a relatively constant 
degree of reflection.  The periodicity in the curves is a 
function of the thickness of the sample in this, and 
later figures.  Lack of precise alignment in periodicity 
between the observed and theoretical curves can be 
attributed to imperfect estimation of the sample’s 
thickness. 

 

 

 
Figure 11: Coefficients for Red Brick 
 

The sample consisted of 17 bricks stacked in 
the window opening, with damp paper towels filling 
the gaps between them, see Figure 12. 
 

 

 
Figure 12: Sample of Red Brick, Front and Rear 
Views 

The sudden change near 2.5GHz might be 
attributable to the fact that this is the resonant 
frequency of water.  Adding a “thin water film” to the 
front surface of the bricks did not significantly alter 
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the curves, as demonstrated by the figures in Table 
3.The ceiling tile is of the kind typically found in office 
buildings, plots of the coefficients are in Figure 13. 

 

 

 
Figure 13: Coefficients of Ceiling Tile 
 
The ceiling tile is shown in the test rig in Figure 14. 

 

 
Figure 14: Ceiling Tile Test Setup 
 

The fiberglass sample was devised from two 
R13-rated, 3.5 inch thick blocks, placed side by side, as 
shown in Figure 15.  Its recommended use is for 
interior walls and exterior walls in warm climates.  It 
showed a particularly poor match to the estimated 
and reference permittivity curves, shown in Figure 16.   
 

 
Figure 15: Fiberglass 
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Figure 16: Fiberglass Coefficients 
 

The reference curve, with relative permittivity 
taken from [10], is specifically for fiberglass with 40% 
glass.  The glass content of the fiberglass in this case is 
not known.  The measured complex permittivity was 
1.02(1+j0.0009), indicating very little resistance to 
wave propagation and low reflection values.  The 
large decibel deviation in reflection coefficient 
between measured and theoretical curves can be 
explained by the increased fractional error at low 
power, as discussed above. 
The drywall demonstrated very little change in 
transmitted power across the frequency range, as 
shown in Figure 17 for the 13mm sample. 

 

 

 
Figure 17: 12.8mm Thick Drywall Coefficients 

The deviations in reflected power and lack of 
corresponding deviations in transmitted power near 3 
and 5 GHz are unexplained, however, they are 
apparent in the drywall samples of both thicknesses, 
and the sample of bathroom tiles glued to a different 
13mm drywall sample. (see Appendix). 
 The sample of Fir lumber was composed of 
two stacked blocks of 18w x 12h x 2d inches, sealed 
with damp paper towels, refer to Figure 18.    
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 The coefficient curves are shown in Figure 19.  
As mentioned above, the relative permittivity for 
wood varies greatly depending on moisture content 
[23].  The reference curve used in these figures 
assumed a moisture content near 0. The estimated 
curve suggests the actual moisture content is closer to 
20%, perhaps enhanced by the presence of the damp 
paper between blocks.  The presence of nulls in the 
reflection coefficient is a function of the sample 
thickness.  The reduction in transmitted power 
between 2.3 and 5.25 GHz is over 3dB. 

The plywood demonstrated similar nulls in 
the reflection coefficient, however, the location of the 
null is close to 5.3GHz, corresponding to half a 
wavelength in the 18mm plywood, and therefore an 
over 20dB reduction in reflected power from 2.3 to 
5.25 GHz.  Note that at the reported permittivity of 
1.7, as given in Table 2, the half wavelength null 
would be at 6.4GHz.  Once again, the permittivity is a 
function of moisture content. 
 

 
Figure 18: 2" Fir Lumber Sample 
 

 

 

 
Figure 19: Coefficients of 2" Fir lumber 
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Figure 20: Coefficients of Plywood 
 

The stucco sample is 1 inch thick concrete on a 
backing of steel diamond mesh, see below.  In the 
figure the diamond mesh (back) side of the stucco is 
facing the transmitter, however, the  
 

 

 
Figure 21 Stucco Sample, Front and Back 
 
plots below are for the front facing measurement.  For 
plots of the diamond mesh on its own see the 
Appendix. 

The small size of the gaps in the diamond 
mesh cause it to reflect more energy at lower 
frequencies. The stucco also displayed this behavior, 
as shown in Figure 22.  However, the stucco features a 
null in the reflection coefficient that is not present in 
the diamond mesh alone, probably from the standing 
wave effects due to the thickness of the sample, as 
mentioned previously. 
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Figure 22: Coefficients of Stucco (front) 
 

The combination of these effects results in 
little difference in transmitted power between 2.3 and 
5.35 GHz, compared to the difference due to the 
diamond mesh alone. 

The most complex sample is the cinder block.  
The large size of the blocks made it impossible to fit 
enough onto the sample platform to fill the window, 
however, the window was covered to within an inch 
on either side. To temporarily reduce the lateral 
window size, absorber material was inserted on each 
side.  The empty frame was also re-measured with the 
smaller window and used as a reference for the cinder 
block measurement.  The new measurement set up is 
shown in Figure 23. 
 

 

 
Figure 23: Modified Window Measurement Setup 
for Cinder Block with Added Absorber Material 
 

The coefficient curves are shown in Figure 24.  
The plane-parallel plate model used for other 
materials is not suitable for the complex structure of 
the blocks [2], and no attempt was made to model the 
behavior.  The curves reflect the expected periodicity 
in response due to the physically periodic structure of 
the material. The resulting difference between the 2 
and 5 GHz bands is approximately 3dB. 
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Figure 24: Coefficient Curves for the Cinder Block 
 
 
 

6. Conclusions 
  

Twenty materials, both homogenous and 
composite, have been studied to determine the 
variation in transmitted and reflected energy over 
frequency.  The difference in behavior between the 
2.2-2.4GHz and 5.15-5.35GHz bands is of particular 
interest.  In order to verify the observed behavior, the 
measured data was used to calculate the relative 
permittivity and loss tangent of each material and the 
observed behavior compared to that of a common 
plane-parallel plate physical model.  In most cases the 
observed and modeled behavior matched well, 
although for many materials reference values of 
relative permittivity and loss tangent to use as a 
further check have not been found. 
 For most materials, the decrease in 
transmitted power between 2.3 and 5.25 GHz is less 
than 1 dB, the exceptions being red brick (10.1dB), 
glass (1.2dB), 2 inch Fir lumber (3.3dB), cinder block 
(3.6dB), and stucco (increased 1.6dB).  The variation in 
reflected power is more variable in a relative sense, 
due to the generally lower reflected energy.  Reflected 
energy also shows a strong frequency dependence 
that is a function of the thickness of the sample, as 
well as its permittivity. 
 
7. Looking Ahead 
 

An upcoming Magis white paper will utilize 
the results of this report,, in addition to other theory 
and field measurements, to develop a number of 
advantages that operation at 5 GHz has over 
operation at 2.4 GHz. These advantages go well 
beyond spectrum issues (e.g., microwave ovens, 
2.4GHz cordless phones, etc.) that are problematic at 
2.4 GHz.  Range and throughput performance results 
in non-line-of-sight case studies will be reported that 
far exceed the performance reported to date for 
802.11a and 802.11b systems.  
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8. Appendix: Measurements 

 

 

 
Figure 25: Blinds (Closed) 

 

 

 

 

 
Figure 26: Blinds (Open) 



Propagation Losses: 2.4 GHz vs. 5 GHz   18 
 

 
E10589 2002 Magis Networks, Inc.  
 

 

 
 

 
Figure 27: Carpet (Back) 

 

 

 
Figure 28: Carpet (Front) 
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Figure 29: Diamond Mesh (for Stucco) 

 

 

 
Figure 30: Heavy Fabric 



Propagation Losses: 2.4 GHz vs. 5 GHz   20 
 

 
E10589 2002 Magis Networks, Inc.  
 

 

 

 
Figure 31: Glass 

 

 

 
Figure 32: Paper Backed Wire Lath (for Stucco, Paper 
Side) 
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Figure 33: Paper Backed Wire Lath (for Stucco, Wire 
Side) 

 

 

 
Figure 34: Linoleum (Back) 
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Figure 35: Linoleum (Front) 

 

 

 
Figure 36: Light Cover (Front) 
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Figure 37: Light Cover (Back) 

 

 

 
Figure 38: Drywall (8mm) 
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Figure 39: Particle Board 

 

 

 
Figure 40: Plexiglass (2.5mm) 
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Figure 41: Stucco (Back) 

 
 

 

 
Figure 42: Bathroom Tile with Grout, Glued to 
13mm Drywall 
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Figure 43: Tar Paper 

 

 

 
Figure 44: Wet Bricks 



Propagation Losses: 2.4 GHz vs. 5 GHz   27 
 

 
E10589 2002 Magis Networks, Inc.  
 

 

 

 
Figure 45: Wet Cinder Block 
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are described further for the ideal type-2 PLL in Table 1-1. The feedback divider is normally present 
only in frequency synthesis applications, and is therefore shown as an optional element in this figure.  

PLLs are most frequently discussed in the context of continuous-time and Laplace transforms. A 
clear distinction is made in this text between continuous-time and discrete-time (i.e., sampled) PLLs 
because the analysis methods are, rigorously speaking, related but different. A brief introduction to 
continuous-time PLLs is provided in this section with more extensive details provided in Chapter 6. 

PLL type and PLL order are two technical terms that are frequently used interchangeably even 
though they represent distinctly different quantities. PLL type refers to the number of ideal poles (or 
integrators) within the linear system. A voltage-controlled oscillator (VCO) is an ideal integrator of 
phase, for example. PLL order refers to the order of the characteristic equation polynomial for the 
linear system (e.g., denominator portion of (1.4)). The loop-order must always be greater than or equal 
to the loop-type. Type-2 third- and fourth-order PLLs are discussed in Chapter 6, as well as a type-3 
PLL, for example.  

dK
refθ

Phase
Detector

Loop
Filter

VCO

Feedback
Divider

1
N

outθ

 
Figure 1-2 Basic PLL structure exhibiting the basic functional ingredients. 

 
Table 1-1 

Basic Constitutive Elements for a Type-2 Second-Order PLL 
Block Name Laplace Transfer Function Description 

Phase Detector Kd, V/rad Phase error metric that outputs a voltage that is proportional 
to the phase error existing between its input θref and the 
feedback phase θout/N. Charge-pump phase detectors output 
a current rather than a voltage, in which case Kd has units of 
A/rad. 

Loop Filter 
2

1

1 s
s

τ
τ

+
 

Also called the lead-lag network, it contains one ideal pole 
and one finite zero. 

VCO 
vK

s
 

The voltage-controlled oscillator (VCO) is an ideal 
integrator of phase. Kv normally has units of rad/s/V. 

Feedback Divider 1/N A digital divider that is represented by a continuous divider 
of phase in the continuous-time description. 

 
The type-2 second-order PLL is arguably the workhorse even for modern PLL designs. This PLL 

is characterized by (i) its natural frequency ωn (rad/s) and (ii) its damping factor ζ. These terms are 
used extensively throughout the text, including the examples used in this chapter. These terms are 
separately discussed later in Sections 6.3.1 and 6.3.2. The role of these parameters in shaping the time- 
and frequency-domain behavior of this PLL is captured in the extensive list of formula provided in 
Section 2.1. In the continuous-time-domain, the type-2 second-order PLL3 open-loop gain function is 
given by 

                                                           
3  See Section 6.2. 
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and the key loop parameters are given by 
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The time constants τ1 and τ2 are associated with the loop filter’s R and C values as developed in 
Chapter 6. The closed-loop transfer function associated with this PLL is given by the classical result 
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The transfer function between the synthesizer output phase noise and the VCO self-noise is given by 
H2(s) where 

 
 ( ) ( )2 11H s H s= −  (1.5) 

 
A convenient frequency-domain description of the open-loop gain function is provided in Figure 

1-3. The frequency break-points called out in this figure and the next two appear frequently in PLL 
work and are worth committing to memory. The unity-gain radian frequency is denoted by ωu in this 
figure and is given by 

 2 42 4 1u nω ω ζ ζ= + +  (1.6) 
 
A convenient approximation for the unity-gain frequency (1.6) is given by ωu ≅  2ζωn. This result is 
accurate to within 10% for ζ  ≥ 0.704.  

The H1(s) transfer function determines how phase noise sources appearing at the PLL input are 
conveyed to the PLL output and a number of other important quantities. Normally, the input phase 
noise spectrum is assumed to be spectrally flat resulting in the output spectrum due to the reference 
noise being shaped entirely by |H1(s)|2. A representative plot of |H1|

2 is shown in Figure 1-4. The key 
frequencies in the figure are the frequency of maximum gain, the zero dB gain frequency, and the –3 
dB gain frequency which are given respectively by 
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2 2
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Figure 1-3 Open-loop gain approximations for classic continuous-time type-2 PLL. 
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Figure 1-4 Closed-loop gain H1( f ) for type-2 second-order PLL4 from (1.4). 
 
The amount of gain-peaking that occurs at frequency Fpk is given by 
 

 
4

10 4 2 2

8
10log  dB

8 4 1 1 8
PkG

ζ
ζ ζ ζ

 
 =
 − − + + 

 (1.10) 

 
For situations where the close-in phase noise spectrum is dominated by reference-related phase noise, 
the amount of gain-peaking can be directly used to infer the loop’s damping factor from (1.10), and the 
                                                           
4  Book CD:\Ch1\u14033_figequs.m, ζ  = 0.707, ωn =  2π 10 Hz. 
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loop’s natural frequency from (1.7). Normally, the close-in (i.e., radian offset frequencies less than     
ωn /2ζ) phase noise performance of a frequency synthesizer is entirely dominated by reference-related 
phase noise since the VCO phase noise generally increases 6 dB/octave with decreasing offset 
frequency5 whereas the open-loop gain function exhibits a 12 dB/octave increase in this same 
frequency range. 

VCO-related phase noise is attenuated by the H2(s) transfer function (1.5) at the PLL’s output for 
offset frequencies less than approximately ωn. At larger offset frequencies, H2(s) is insufficient to 
suppress VCO-related phase noise at the PLL’s output. Consequently, the PLL’s output phase noise 
spectrum is normally dominated by the VCO self-noise phase noise spectrum for the larger frequency 
offsets. The key frequency offsets and relevant H2(s) gains are shown in Figure 1-5 and given in Table 
1-2. 
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Figure 1-5 Closed-loop gain6 H2 and key frequencies for the classic continuous-time type-2 PLL. 
 

Table 1-2 
Key Frequencies Associated with H2(s) for the Ideal Type-2 PLL 
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5  Leeson’ s model in Section 9.5.1; Haggai oscillator model in Section 9.5.2. 
6  Book CD:\Ch1\u14035_h2.m. 
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Assuming that the noise samples have equal variances and are uncorrelated, R = σn
2I where I is the 

K×K identity matrix. In order to maximize (1.43) with respect to θ, a necessary condition is that the 
derivative of (1.43) with respect to θ  be zero, or equivalently 
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 (1.44) 

 
Simplifying this result further and discarding the double-frequency terms that appear, the maximum-
likelihood estimate for θ  is that value that satisfies the constraint 
 

 ( )kˆsin 0k o k
k

r tω θ+ =∑  (1.45) 

 
The top line indicates that double-frequency terms are to be filtered out and discarded. This result is 
equivalent to the minimum-variance estimator just derived in (1.40). 

Under the assumed linear Gaussian conditions, the minimum-variance (MV) and maximum-
likelihood (ML) estimators take the same form when implemented with a PLL. Both algorithms seek to 
reduce any quadrature error between the estimate and the observation data to zero. 

1.4.3 PLL as a Maximum A Posteriori (MAP)-Based Estimator 

The MAP estimator is used for the estimation of random parameters whereas the maximum-likelihood 
(ML) form is generally associated with the estimation of deterministic parameters. From Bayes rule for 
an observation z, the a posteriori probability density is given by  
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p z

θ θ
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and this can be re-written in the logarithmic form as 

 
 ( ) ( ) ( ) ( )log log log loge e e ep z p z p p zθ θ θ   = + −           (1.47) 

 
This log-probability may be maximized by setting the derivative with respect to θ to zero thereby 
creating the necessary condition that27 
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If the density p(θ ) is not known, the second term in (1.48) is normally discarded (set to zero) which 
degenerates naturally to the maximum-likelihood form as 
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27  [15] Section 6.2.1, [17] Section 2.4.1, [18] Section 5.4, and  [22]. 
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Time of Peak Phase-Error with Frequency-Step Applied 
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See Figure 2-19 and Figure 2-20. 
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Time of Peak Frequency-Error with Phase-Step Applied 
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See Figure 2-21 and Figure 2-22.  
Tpk corresponds to the first point in time where dfo/dt = 0. 

 
 
(2.31) 
 
 
(2.32) 

Maximum Frequency-Error with Phase-Step Applied 
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% Transient Frequency Overshoot for Frequency-Step Applied 
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Linear Hold-In Range with Frequency-Step Applied (Without Cycle-Slip) 
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See Figure 2-25. 
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Linear Settling Time with Frequency-Step Applied (Without Cycle-Slip) (Approx.) 
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for applied frequency-step of ∆F and residual δ F remaining at lock 
See Figure 2-26. 

 
(2.38) 

                                                           
1 The peak occurrence time is precisely one-half that given by (2.34). 
2 See Figure 2-24 for time of occurrence Tpk for peak overshoot/undershoot with ωn = 2π. Amount of overshoot/undershoot in 
percent provided in Figure 2-23. 
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2.3.2.2 Second-Order Gear Result for H1(z) for Ideal Type-2 PLL 
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Figure 2-32 Second-order Gear redesign of H1(s) (2.4). 
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(2.57) 

2.3.3 Higher-Order Differentiation Formulas 

In cases where a precision first-order time-derivative f (xn+1) must be computed from an equally 
spaced sample sequence, higher-order formulas may be helpful.8 Several of these are provided here 
in Table 2-2. The uniform time between samples is represented by Ts. 

 

                                                           
8  Precisions compared in Book CD:\Ch2\u14028_diff_forms.m. 
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2.5.5 64-QAM Symbol Error Rate 
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Figure 2-37 64-QAM uncoded symbol error rate with noisy local oscillator.13 Circled datapoints are from (2.87). 
 

                                                           
13  Book CD:\Ch5\u13159_qam_ser.m. See Section 5.5.3 for additional information. Circled datapoints are based on Proakis 
[3] page 282, equation (4.2.144), included in this text as (2.87). 
 



         Fundamental Limits                                                                      83 

 

A more detailed discussion of the Chernoff bound and its applications is available in [9].  
 

Key Point: The Chernoff bound can be used to provide a tight upper-bound for the tail-probability 
of a one-sided probability density. It is a much tighter bound than the Chebyschev inequality given 
in Section 3.5. The bound given by (3.43) for the complementary error function can be helpful in 
bounding other performance measures. 

3.7 CRAMER-RAO BOUND 

The Cramer-Rao bound16 (CRB) was first introduced in Section 1.4.4, and frequently appears in 
phase- and frequency-related estimation work when low SNR conditions prevail. Systems that 
asymptotically achieve the CRB are called efficient in estimation theory terminology. In this text, 
the CRB is used to quantify system performance limits pertaining to important quantities such as 
phase and frequency estimation, signal amplitude estimation, bit error rate, etc. 

The CRB is used in Chapter 10 to assess the performance of several synchronization 
algorithms with respect to theory. Owing to the much larger signal SNRs involved with frequency 
synthesis, however, the CRB is rarely used in PLL-related synthesis work. The CRB is developed in 
considerable detail in the sections that follow because of its general importance, and its widespread 
applicability to the analysis of many communication system problems. 

 The CR bound provides a lower limit for the error covariance of any unbiased estimator of a 
deterministic parameter θ based on the probability density function of the data observations. The 
data observations are represented here by zk for k = 1, . . ., N, and the probability density of the 
observations is represented by p(z1, z2, . . ., zN) = p(z). When θ represents a single parameter and θ -
hat represents the estimate of the parameter based on the observed data z, the CRB is given by three 
equivalent forms as 
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The first form of the CR bound in (3.46) can be derived as follows. Since θ -hat is an unbiased 

(zero-mean) estimator of the deterministic parameter θ, it must be true that 
 

 ( ) ( )ˆ 0p dθ θ θ
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−∞

 = − = ∫E z z�  (3.47) 

 
in which 1 2  . . . Nd dz dz dz=z . Differentiating (3.47) with respect to θ produces the equality 

                                                           
16  See [10]–[14]. 
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In the formulation presented by (3.55), the signal-to-noise ratio ρ is given by ρ = b0

2 / (2σ 2).  
For the present example, the CR bound is given by the top equation in (3.63) and is as shown 

in Figure 3-9 when the initial signal phase θo is known a priori. Usually, the carrier phase θo is not 
known a priori when estimating the signal frequency, however, and the additional unknown 
parameter causes the estimation error variance to be increased, making the variance asymptotically 
4-times larger than when the phase is known a priori. This CR variance bound for this more typical 
unknown signal phase situation is shown in Figure 3-10. 

Beginning with (3.57), a maximum-likelihood17 frequency estimator can be formulated as 
described in Appendix 3A. It is insightful to compare this estimator’s performance with its 
respective CR bound. For simplicity, the initial phase θo is assumed to be random but known a 
priori. The results for M = 80 are shown in Figure 3-11 where the onset of thresholding is apparent 
for ρ ≅ –2 dB. Similar results are shown in Figure 3-12 for M = 160 where the threshold onset has 
been improved to about ρ ≅ –5 dB. 
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Figure 3-9 CR bound18 for frequency estimation error with phase θo known a priori (3.63). 

                                                           
17  See Section 1.4.2. 
18  Book CD:\Ch3\u13000_crb.m. Amplitude known or unknown, frequency unknown, initial phase known. 
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would be measured and displayed on a spectrum analyzer. Having recognized the carrier and 
continuous spectrum portions within (4.65), it is possible to equate29 

 
 ( ) ( ) 2rad /Hzf P fθ≅/  (4.66) 

 

Frequency

( )1
2 oP fθ ν−

Carrier

oν
xf

( )xf/

oν−

Power

 
Figure 4-17 Resultant two-sided power spectral density from (4.65), and the single-sideband-to-carrier ratio 

�
( f ). 

 
Both /( f ) and Pθ ( f ) are two-sided power spectral densities, being defined for positive as well as 
negative frequencies.  

The use of one-sided versus two-sided power spectral densities is a frequent point of confusion 
in the literature. Some PSDs are formally defined only as a one-sided density. Two-sided power 
spectral densities are used throughout this text (aside from the formal definitions for some quantities 
given in Section 4.6.1) because they naturally occur when the Wiener-Khintchine relationship is 
utilized.  

4.6.1 Phase Noise Spectrum Terminology 

A minimum amount of standardized terminology has been used thus far in this chapter to 
characterize phase noise quantities. In this section, several of the more important formal definitions 
that apply to phase noise are provided. 

A number of papers have been published which discuss phase noise characterization 
fundamentals [34]–[40]. The updated recommendations of the IEEE are provided in [41] and those 
of the CCIR in [42]. A collection of excellent papers is also available in [43].  

In the discussion that follows, the nominal carrier frequency is denoted by νo (Hz) and the 
frequency-offset from the carrier is denoted by f (Hz) which is sometimes also referred to as the 
Fourier frequency. 

One of the most prevalent phase noise spectrum measures used within industry is /( f ) which 
was encountered in the previous section. This important quantity is defined as [44]: 
  

/( f ): The normalized frequency-domain representation of phase fluctuations. It is the ratio 
of the power spectral density in one phase modulation sideband, referred to the carrier 
frequency on a spectral density basis, to the total signal power, at a frequency offset f. The 
units30 for this quantity are Hz–1. The frequency range for f ranges from –νo to ∞. /( f ) is 
therefore a two-sided spectral density and is also called single-sideband phase noise. 

                                                           
29  It implicitly assumed that the units for 

�
( f ), dBc/Hz or rad2/Hz, can be inferred from context. 

30  Also as rad2/Hz. 
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 exp
2i iz p p
α = ∆  

 (4B.10) 

 
A minimum of one filter section per frequency decade is recommended for reasonable accuracy. A 
sample result using this method across four frequency decades using 3 and 5 filter sections is shown 
in Figure 4B-3. 
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Figure 4B-3 1/f noise creation using recursive 1/f 2 filtering method4 with white Gaussian noise. 

 1/f �

 Noise Generation Using Fractional-Differencing Methods 

Hosking [6] was the first to propose the fractional differencing method for generating 1/f α noise. As 
pointed out in [3], this approach resolves many of the problems associated with other generation 
methods. In the continuous-time-domain, the generation of 1/f α noise processes involves the 
application of a nonrealizable filter to a white Gaussian noise source having s–α/2 for its transfer 
function. Since the z-transform equivalent of 1/s is H(z) = (1 – z–1)–1, the fractional digital filter of 
interest here is given by 
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( ) / 21
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H z

z
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−

 (4B.11) 

 
A straightforward power series expansion of the denominator can be used to express the filter as an 
infinite IIR filter response that uses only integer-powers of z as 
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in which the general recursion formula for the polynomial coefficients is given by 

                                                           
4  Book CD:\Ch4\u13070_recursive_flicker_noise.m. 
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Figure 5-9 Strong interfering channels are heterodyned on top of the desired receive channel by local oscillator sideband 
noise. 
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Figure 5-10 Baseband spectra10 caused by reciprocal mixing between a strong interferer that is offset 4B Hz higher in 
frequency than the desired signal and stronger than the desired signal by the dB amounts shown.  
 
The first term in (5.28) 2BLFloor is attributable to the ultimate blocking performance of the receiver 
as discussed in Section 5.3. The resultant output SNR versus input SNR is given by 
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 (5.29) 

 
It is worthwhile to note that the interfering spectra in Figure 5-10 are not uniform across the 

matched-filter frequency region [–B, B]. Multicarrier modulation like OFDM (see Section 5.6) will 
potentially be affected differently than single-carrier modulation such as QAM (see Section 5.5.3) 
when the interference spectrum is not uniform with respect to frequency. 

The result given by (5.29) is shown for several interfering levels versus receiver input SNR in 
Figure 5-11. 
                                                           
10  Book CD:\Ch5\u13157_rx_desense.m. Lorentzian spectrum parameters: Lo = –90 dBc/Hz,  fc = 75 kHz, LFloor = –160 
dBc/Hz, B = 3.84/2 MHz. 
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of 3° rms phase noise is shown in Figure 5B-8. The tail probability is worse than the exact 
computations shown in Figure 5-17 but the two results otherwise match very well. 
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Figure 5B-6 Channel cutoff rate,7 Ro, for 16-QAM with static phase errors as shown, from (5B.16). 
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Figure 5B-7 Ro for8 16-QAM versus Eb/No for 5° rms phase noise from (5B.18) (to accentuate loss in Ro even at high SNR 
values). 
                                                           
7  Book CD:\Ch5\u13176_rolo.m. 
8  Ibid. 
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required, however, because the offset current will introduce its own shot-current noise contribution, 
and the increased duty-cycle of the charge-pump activity will also introduce additional noise and 
potentially higher reference spurs. Single-bit ∆-Σ modulators are attractive in this respect because 
they lead to the minimum-width phase-error distribution possible. 
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Figure 8-70 Charge-pump (i) dead-zone and (ii) unequal positive versus negative error gain. 
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Figure 8-71 Phase error power spectral density48 for the MASH 2-2 ∆-Σ modulator shown in Figure 8-55 with M = 222, P = 
M/2 + 3,201, and 2% charge-pump gain imbalance. Increased noise floor and discrete spurs are clearly apparent compared to 
Figure 8-56. 
 

Classical random processes theory can be used to provide several useful insights about 
nonlinear phase detector operation. In the case of unequal positive-error versus negative-error phase 
detector gain, the memoryless nonlinearity can be modeled as 

 
 ( )0pd in in inθ φ α φ φ= + >  (8.39) 
 
where α represents the additional gain that is present for positive phase errors.  The instantaneous 
phase error due to the modulator’s internal quantization creates a random phase error sequence that 
can be represented by 
                                                           
48  Book CD:\Ch8\u12735_MASH2_2_nonlinear.m. 
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the sampling-point within each symbol-period after the datalink signal has been fully acquired. In 
the example results that follow, the data source is assumed to be operating at 1 bit-per-second, 
utilizing square-root raised-cosine pulse-shaping with an excess bandwidth parameter β = 0.50 at 
the transmitter. The eye-diagram of the signal at the transmit end is shown in Figure 10-15. The 
ideal matched-filter function in the CDR is closely approximated by an N = 3 Butterworth lowpass 
filter having a –3 dB corner frequency of 0.50 Hz like the filter used in Section 10.4. The resulting 
eye-diagram at the matched-filter output is shown in Figure 10-16 for Eb/No = 25 dB. 
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Figure 10-14 ML-CDR implemented with continuous-time filters based on the timing-error metric given by (10.21). 
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Figure 10-15 Eye diagram15 at the data source output assuming square-root raised-cosine pulse shaping with an excess 
bandwidth parameter β = 0.50. 
 

A clear understanding of the error metric represented by v(t) in Figure 10-14 is vital for  
understanding how the CDR operates. The metric is best described by its S-curve behavior versus 
input Eb/No as shown in Figure 10-17. Each curve is created by setting the noise power spectral 
density No for a specified Eb/No value with Eb = 1, and computing the average of v( kTsym+ ε ) for k = 
[0, K] as the timing-error ε is swept across [0, Tsym]. The slope of each S-curve near the zero-error 
steady-state tracking value determines the linear gain of the metric that is needed to compute the 
closed-loop bandwidth, loop stability margin, and other important quantities. For a given input SNR, 
                                                           
15  Book CD:\Ch10\u14004_ml_cdr.m. 
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the corresponding S-curve has only one timing-error value εo for which the error metric value is zero 
and the S-curve slope has the correct polarity. As the gain value changes with input Eb/No, the 
closed-loop parameters will also vary. For large gain variations, the Haggai loop concept explored 
in Section 6.7 may prove advantageous. 
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Figure 10-16 Eye diagram16 at the CDR matched-filter output for Eb/No = 25 dB corresponding to the data source shown in 
Figure 10-15 and using an N = 3 Butterworth lowpass filter with BT = 0.50 for the approximate matched-filter. 
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Figure 10-17 S-curves17 versus Eb/No corresponding to Figure 10-16 and ideal ML-CDR shown in Figure 10-14. Eb = 1 is 
assumed constant. 
 

A second important characteristic of the timing-error metric is its variance versus input Eb/No 
and static timing-error ε. For this present example, this information is shown in Figure 10-18. The 
variance understandably decreases as the input SNR is increased, and as the optimum time-
alignment within each data symbol is approached. The variance of the recovered data clock σclk

2 can 
be closely estimated in terms of the tracking-point voltage-error variance from Figure 10-18 denoted 
by σve

2 (V2), the slope (i.e., gain) of the corresponding S-curve (Kte, V/UI) from Figure 10-17, the 
symbol rate Fsym (= 1/Tsym), and the one-sided closed-loop PLL bandwidth BL (Hz) as 
                                                           
16  Ibid. 
17  Ibid. 


