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Unconventional Phase-Locked Loops Simplify 
Difficult Designs 

By James A. Crawford 
 
 
One of the most important building blocks in modern day communication and signal processing 
systems is the phase-locked loop. This topic has been written about extensively over the years, 
but the four techniques described in this article will likely be unfamiliar to most readers. These 
methods should prove helpful across a wide range of applications, including both analog / RF 
and digital signal processing domains. 
 

Technique #1: Addition of a Passive Lag-Lead Network 
 
Readers familiar with PLL design will recognize the classic type-2 fourth-order loop filter shown 
in Figure 1. This PLL is fourth-order because the single-ended loop filter has three capacitors 
(C1, C3, and C5) and the voltage-controlled oscillator (VCO) contributes one additional pole.  

Focusing first on Figure 1, the phase detector in this case has two outputs that are often 
labeled as the pulse-up (PU) and pulse-down (PD) outputs. Denoting the phase detector gain by 
Kd (V / rad. ), the VCO tuning sensitivity by Kv ( rad. / sec. / V ), and assuming that the loop filter 
component values are perfectly symmetric, the open-loop gain transfer function can be written 
as 
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With reasonable choices for the additional pole locations compared to a classical type-2 
second-order PLL, it is convenient to adopt the classical definition for damping factor and write 
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Figure 1 Classic loop filter configuration for a 
type-2 4th-order PLL 
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Figure 2 Classic loop filter configuration 
appended with additional lag-lead type RC 
network 

 
These results are fairly standard and Bode methods can be used to explore the open-loop gain 
and phase of (1) quickly.  

For a numerical example, assume that the PLL has the following parameters: 
 

n Natural frequency, rad / s 2 20 kHz 

 Damping factor 0.80 

N Feedback divider ratio 100 
Kd Phase detector gain, V / rad 0.525 
Kv VCO tuning sensitivity, rad / s / V 2 100 MHz 

 
In order to keep the phase detector referred noise floor low while not excessively loading the 

phase detector outputs, resistors R1 and R2 are chosen to be 510. From this point on, the 
remaining component values can be derived using a simple spreadsheet like that shown in 

Table 1. The only other design parameters that are needed are the ratios 2 / 5 and 3 / 5. The 
ratios need to be made as large as possible in order to preserve PLL gain and phase margin, 
and are consequently both chosen equal to 10 in this example. 

A casual inspection of the computed results shows an immediate issue with the design 

value for R5 because it is only 56. Many op-amps could exhibit their own stability issues if 
configured for such low high-frequency gain. A second concern is that the VCO’s Kv value is 
fairly high and this will make circuit layout issues between the op-amp output and the VCO 
critical. Never the less, calculation of the closed-loop gain functions [2] 
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using (1) can be done as shown in Figure 3. With the circuit configuration in Figure 1 left 
unchanged, there is little recourse available to address these two very real design issues just 
mentioned. Another degree of design freedom is needed in order to improve the design. 
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Table 1 Spreadsheet Calculation for PLL Component Values1 

  Inputs Calculated 

Loop Natural Frequency, Hz 20000   

in rad/s   1.2566E+05 

Loop Damping Factor 0.8   

Feedback Divider Ratio 100   

      

VCO Tuning Sensitivity, MHz/V 100   

VCO Kv, rad/sec/V   6.2832E+08 

Phase Detector Kd, V/rad 0.525   

      

Resistors R1 and R2 510   

Time Constant tau_1   2.0889E-04 

Capacitor C3   2.0480E-07 

Time Constant tau_2   1.2732E-05 

      

Ratio of tau_2 to tau_5 (>>1) 10   

Time Constant tau_5   1.2732E-06 

Time Constant tau_4   1.1459E-05 

      

Resistor R5   5.5954E+01 

Capacitor C5   2.2755E-08 

      

Ratio of tau_2 to tau_3 10   

Time Constant tau_3   1.2732E-06 

Capacitor C1   4.9931E-09 

  
 

 

                                                
1
  Calculated using U17365 Technique 1 Loop Filter Values.xlsx, available at www.am1.us . 

http://www.am1.us/
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Figure 3 Closed-loop gain functions2 for Figure 1 when configured with the component values 
given in Table 1 

Improving the Design 
 

The previous design example can be markedly improved by appending what appears to be a 
passive lag-lead network following the op-amp circuit as shown in Figure 2. Although it has the 
appearance of a passive lag-lead network, it is used to perform an entirely different function. 
 The best way to understand the role of this additional RC section is to mentally replace 
capacitor C7 with an ideal battery. When the battery voltage is set to precisely the value needed 
by the VCO to be on frequency, the output voltage from the op-amp will be equal to this same 
value in steady-state operation and there will be no dc current flow through R7 and R8. In this 
context, it is as if the battery is acting like an ideal coarse tuning voltage for the VCO. Since 
there is no current flow through R7 and R8, the resistive divide ratio R8 / (R7 + R8) can be made 
as small as desired thereby reducing the effective VCO tuning sensitivity seen at the op-amp 
output by the same ratio. This ratio provides the extra degree of design freedom needed as 
mentioned in the previous section. 
 The voltage transfer function of this passive network between the op-amp output and the 
VCO’s tuning port input is given by 
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where 6 = R8 C7 and 7 = R7 C7 + 6. In order to properly use this network, the pole- and zero-
frequencies in (10) must be placed well inside the closed-loop bandwidth where they will not 
affect the stability margins of the PLL. Assuming that these frequencies are much less than the 

                                                
2
  Computed using u17333_technique1.m, available at www.am1.us . 
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natural frequency of the PLL, Gpost  6 / 7  for all frequencies of interest. An example will make 
the details more clear. 
 Assume that the 100 MHz / V tuning sensitivity is to be dropped down to an effective 
VCO tuning sensitivity of 5 MHz / V. This will require the resistor ratio R8 / ( R7 + R8 ) = 1 / 20. 

Choosing resistor R8 to be set to 200 as discussed later, R7 = 3.8 k. In order to have the pole 

and zero well within the PLL’s closed-loop bandwidth, C7 = 1 F is chosen corresponding to a 
zero-frequency of 796 Hz and a pole-frequency of 39.8 Hz. The gain and phase of this network 
versus frequency are shown in Figure 4. 
 

 
Figure 4 Gain and phase for the passive RC-network3 with R7 = 3.80 k , R8 = 200 , and C7 = 

1 F 

 Although the additional RC network increases the gain at low frequencies substantially, 
the gain margin and phase margin remain nearly the same provided that the PLL natural 
frequency and damping factor are kept the same. Letting Kveff represent the effective VCO 
tuning sensitivity, the design equations for Figure 2 that must be modified are 
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Appending (10) to (1) produces the open-loop gain function 
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3
  Calculated using u17335_technique1.m, available from www.am1.us . 
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The other circuit values can be found by using the spreadsheet shown in Table 1 while 
changing the Kv value from 100 MHz/V to 5 MHz/V. The resulting closed-loop gain functions are 
almost identical to the original case whereas the additional open-loop gain at low frequencies is 
apparent as shown in Figure 5. 
 

 
Figure 5 Open-loop gain and phase for the modified loop filter case4 shown in Figure 2. For 
frequencies less than about 10 Hz, the open-loop gain is 20 Log10( 20 ) = 26 dB higher than for 
the original loop filter. 

Performance Characteristics 
 
The discussion that follows is better facilitated using the annotated schematic shown in Figure 
6. Compared to the original design given in Table 1, resistors R5 and R6 now have a much more 

practical value of 1120 and the main feedback capacitors C3 and C4 have been reduced to 10 

nF from 0.2 F.    
 At first glance, it may appear that the large value for R7 and its related Johnson noise 
could hamper noise performance due to the VCO’s tuning sensitivity of 100 MHz / V. Looking 
back from the VCO’s tuning port to the left, however, the tuning port sees the parallel 

combination of R7 and R8 which is only 190 . This modified loop filter configuration frequently 
makes it easier to handle noise problems rather than making them more difficult. 
 Referring to Figure 4, the additional RC network increases the open-loop gain for 
frequencies less than about 1 kHz up to as much as 26 dB. This can be helpful in thwarting low-
frequency power supply noise or excessive close-in 1/f noise in the VCO.  
 The primary disadvantage of the modified loop filter arrangement is that the transient 
response for any large frequency step is slowed substantially. If the new PLL output frequency 
requires a large change in the VCO tuning voltage, the active portion of the loop filter must 
charge or discharge capacitor C7 through the large resistance R7 + R8. In some situations, 
particularly tracking-loop situations, this characteristic can actually be used to advantage.  

                                                
4
  Computed using u17333_technique1.m, available at www.am1.us . 
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Figure 6 Modified loop filter with component values shown 

 

Technique #2: Long-PLLs 
 
The terminology long-PLL [1] normally appears in the context of phase-locked receivers like 
those used for deep-space communications. A representative example is shown in Figure 7. 
The IF bandpass filter and baseband lowpass filter normally have reasonably small bandwidths 
and together result in appreciable group delay that complicates loop stability. Space receivers 
must usually accommodate appreciable Doppler rates thereby leading to an even more difficult 
compromise between closed-loop bandwidth, acquisition capability, and stability. A simple 
modification of the classic type-2 lag-lead loop filter equations can be used to solve this 
otherwise difficult design problem. 
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Figure 7 A representative long-PLL within a double-conversion receiver architecture 

The open-loop gain function for a classic type-2 PLL is given by 
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It is a simple matter to re-write (14) as 
 

   2

1 1

1d v
OL

K K
G s

N s s



 

  
   

  
 (15) 

 
where the proportional and integral terms in the active lag-lead network have been separated. 
Frequency domain analysis can be used to show that most of the stability issues come from 
appreciable delay applied to the proportional gain term whereas the integral term is far more 
tolerant to delay. The design improvement in the context of Figure 7 then comes by putting most 
if not all of the proportional gain in Loop Filter 1 where no group delay contribution from the 
narrow bandpass filter comes into play. The remainder of the open-loop gain function (15) is 
situated into Loop Filter 2. 
 In order to quantitatively look at this design modification further, assume that the group 

delay through the bandpass filter is represented by BPF, and the group delay through the 

lowpass filter is represented by LPF. Only one of the several possible gain distribution variations 
will be considered here where the loop filter transfer functions are given by 
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where  is an arbitrary gain-term ( 0    1 ) that distributes the proportional gain between the 
two loop filters. Assuming that both VCOs have the same tuning sensitivity and that N = 1, the 

Laplace transfer function between the phase at the receiver’s input in and the phase error seen 

by the phase detector e is given by 
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In this form, it is easy to recognize that the effective open-loop gain function is given by 
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The closed-loop gain function H1 using (9) and (18) is shown for a variety of  values in Figure 8 
illustrating how effective this technique can be for constraining what would otherwise be 
unacceptable gain-peaking. Without this technique, nearly 15 dB of gain-peaking would occur 
as shown, but with it, the peaking is reduced to a very acceptable 4 dB. The phase margin 

versus parameter   for this example is shown in Figure 9. Evidence of poor long-loop stability 
in the time domain is manifested as increasingly under-damped phase error transient responses 

as shown in Figure 10 for several values of .  
 As simple as splitting the lag-lead transfer function apart in (15) is, this is a very effective 
way to counter filter-related group delay in a long PLL. 
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Figure 8 Variation of the long-loop closed-loop gain characteristic5 with parameter . In this 

example, the loop natural frequency is n = 2  5 kHz, the damping factor is  = 0.707, with LPF 

= 2.12 s and BPF = 17 s.      

 
Figure 9 Phase margin6 versus parameter  corresponding to Figure 8 

 
 
 
 

                                                
5
  Calculated using u17346_technique2.m, available at www.am1.us . 
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Figure 10 Transient phase error response7 to a 5 kHz input frequency step as a function of 

parameter  corresponding to Figure 8 

 

Technique #3: Haggai Constant Phase Margin Loop 
 
The Haggai PLL is named in honor of Ted Haggai who was a senior scientist at Hughes Aircraft 
Company many years ago. This technique was mentioned in my 1994 textbook on frequency 
synthesizers and expanded further in my 2008 textbook on advanced phase-lock techniques. 
The method has its roots in the constant phase network methods of Bode nearly 100 years ago.  
 The Haggai PLL uses a modified lag-lead network like that shown in Figure 11. The 
beauty of this method is that the closed-loop bandwidth can be varied by a factor of even 100:1 
while the phase margin remains nearly unchanged.  
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Figure 11 Single-ended active loop filter architecture for the Haggai PLL 

                                                
7
  Calculated using u17363_transient_method2.m, available at www.am1.us . 
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 In a phase-locked receiver, the phase detector gain is always a function of the input 
signal to noise ratio (SNR) due to small-signal suppression effects imposed by the noise. Since 
the PLL’s natural frequency is a function of the phase detector gain as shown by (7), and the 

PLL’s damping factor is a function of natural frequency n based upon (8), the PLL’s phase 
margin normally deteriorates as the input SNR decreases. The PLL’s ability to track Doppler 
frequency error is also degraded under these conditions. Haggai was granted a patent8 on his 
constant phase margin technique in 1970 because his method ingeniously solved these 
problems. 
 The Haggai method is also very useful when the closed-loop bandwidth is to be 
purposely adjustable over a wide frequency range in a synthesis application, for example. Even 
though the bandwidth can be changed significantly, the phase margin remains almost constant.  
 There is no closed-form solution for the lag-lead zeros used in the Figure 11 schematic. 
These parameters must be found using numerical methods as discussed in Chapter 6 of [2]. 
 In the Haggai loop filter case utilizing two sections as shown in Figure 12, its open-loop 
gain function is given by 
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where ( 1 + sx )
–1 represents the additional lowpass filter section following the Haggai lag-lead 

network and 
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Figure 12 Two-section Haggai loop filter 

 
In the case of a step-frequency change applied to the PLL (represented by a step-change in the 

VCO tuning voltage of  V ), the Laplace transform of the PLL’s output phase error is given by 
 
 

                                                
8
 U.S. Patent 3,551,829 granted 29 Dec 1970, titled “Phase Lock Receiver with a Constant Slope 

Network.” 
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 A simple design example helps to illustrate how this PLL configuration performs. Based 
upon design information provided in [2], consider the case where R1 = 1k, R2 = 692.928, Rx = 

1k, C1 = 46.78 nF, C2 = 3.436 nF, Cx= 265 pF, Kd = 0.001 /  (A/rad ), Kv = 2 25 MHz/V, and N 
= 1000. The natural frequency given by (20) is 5.022 kHz. The open-loop gain and phase for 
this example are shown in Figure 13. Since the open-loop phase remains almost constant over 
the frequency range of about 8 kHz to over 200 kHz, the closed-loop bandwidth can be varied 
over this same span with almost no affect on the PLL stability margins. The closed-loop gain 
functions are very well behaved as shown in Figure 14. 
 

 
Figure 13 Open-loop gain and phase9 for the two-section Haggai PLL example. Note that the 
open-loop phase is equal-ripple about –120o from about 8 kHz to slightly over 200 kHz 
representing a bandwidth range of 25 : 1. 

                                                
9
  Calculated using u17364_technique3.m, available at www.am1.us . 
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Figure 14 Closed-loop gain characteristics10 for the Haggai example. The gain-peaking is very 
low because the phase margin is 60o. 

 There is only one characteristic of the Haggai method that may present an issue and 
that is its time domain transient response behavior. The penalty for bandwidth flexibility with 
constant phase margin is an extended time domain response tail as shown in Figure 15 as 
compared to an optimized traditional type-2 PLL having the same bandwidth. The PLL 

bandwidth ( n ) is changed over a 10:1 range in this figure and no hint of loop instability 
emerges due to the constant phase margin delivered by this method. 
 

 
Figure 15 Transient phase error response of the Haggai PLL11 to a 1 mV step-change in the 
VCO tuning voltage. Natural frequency cases shown correspond to 5.02 kHz for the 1x case up 
to 50.2 kHz for the 10x case. 
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Technique #4: Quadri-Correlator 
 
The rapid evolution of wireless systems over the past twenty years has led to truly exceptional 
integrated PLL devices, notably the Platinum family from National Semiconductor and more 
recently the Hittite HMC700. Even so, if the ultimate in phase noise performance is needed, a 
mixer-based phase detector of some kind must normally be used. Harmonic-sampling phase 
detectors are also a member of this category. One major disadvantage that must be addressed 
with mixer-based PLL approaches, however, is the dramatically reduced capture range that 
normally results. PLLs that implement the phase detector function digitally usually include a 
frequency discrimination capability that allows them to achieve phase-lock even if very large 
initial frequency errors are present whereas this feature is absent in mixer-based PLLs. 
 The quadri-correlator method has been known for a long time, having appeared in 
Gardner’s classic book on PLLs [3]. This method as well as several other related frequency 
discriminator methods can be derived from the classic paper by Natali [4]. A variant of this 
method was used in [5] for differentiating between upper and lower sideband mixing products in 
an offset-PLL. Whereas many methods have been proposed and used to address this 
frequency pull-in limitation, the quadri-correlator method is particularly advantageous.  
 The quadri-correlator method gets its name from the fact that it requires in-phase (I) and 
quadrature-phase (Q) components of the RF signal to be resolved. Since the associated phase 
of the signal is given by 

 
1tan

Q

I
   
  

 
 (23) 

 

implicit differentiation of this equation combined with recognizing /d dt  as radian frequency  

results in the instantaneous frequency error being expressible as  
 

 
2 2

IQ QI

I Q






 (24) 

 
where the overhead dots denote differentiation with respect to time. This result can be closely 
approximated with several remarkably simple analog circuits to produce a very effective 
frequency-discrimination capability. 
 A convenient approximation for the time derivatives in (24) is  
 

 

   

   

/ 2 / 2

/ 2 / 2

I t I tdI

dt

Q t Q tdQ

dt

 



 



  


  


 (25) 

 

where   is a small time delay compared to the possible frequency errors involved, and 
substitution into (24) thereby produces 
 

 
           

   2 2

/ 2 / 2 / 2 / 21 I t Q t Q t Q t I t I t

I t Q t

   




            


 (26) 

                                                                                                                                                       
11

 Ibid. 
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Figure 16 Mixer-based PLL configured with a quadri-correlator based frequency discriminator. 
Once the VCO has been frequency-locked, the frequency discriminator path is switched out 
leaving a conventional PLL. 

 

Normally the 1 /   is simply lumped in with other gain factors as a single proportionality 
constant, and the time delays in (26) can usually be approximately by using simple RC-sections 
as shown in Figure 16. 
 The frequency discriminator portion of Figure 16 can be analyzed using Laplace 
transforms based upon the simplified model shown in Figure 17. The key parameters are 
 

FD Time delay associated with frequency discriminator 

KFM Gain of frequency discriminator, V / Hz 
HLPF Second-order passive lowpass filter that follows the discriminator 
Kv VCO tuning sensitivity in rad/s/V 

 
The voltage transfer function of the lowpass filter immediately following the frequency 
discriminator is simplified if the R5 = R6 = R7 = R and C5 = C6 = C to 
 

  
2

2 24 3

LPF
LPF

LPF LPF

H s
s s



 


 
 (27) 

 

where LPF = ( RC )–1. The bandwidth of the LPF-I and LPF-Q lowpass filters is usually very 
large compared to closed-loop bandwidth, so these filters are ignored in Figure 17 except for the 

delay that they present FD.  
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Figure 17 Linearized model for the frequency-locked loop 
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From Figure 17, the open-loop gain can then be written as 
 

     2

1

1

2
FDs v

OL FM LPF

Kss
G s e K H s

s s

 

 

   
   

   
 (28) 

 

A first-order design equation can be obtained by approximating exp( –sFD ) as 1 – sFD in (27) 
as 

  
1 1

3 1
LPFH s

s



 (29) 

 

where  = 4 / ( 3 LPF ). The characteristic equation for the system follows as 
 

 
 22

2 2

1
0

FD

FD FD
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s s

K K
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  
 (30) 

 

with K’ = KFM Kv / ( 6  1 ). Based upon this result, the natural frequency and damping factor for 
the frequency-locked loop are approximately given by 
 

 

2

n

FD

K

K

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 (31) 
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 (32) 

 

It is immediately clear from these results that  > K’ 2 FD is required in order to have any 
measure of loop stability. It can also be shown that the transient response of the FLL is 

optimized by choosing 2 = FD.  
 It is convenient to use (9) in the context of (28) for computing the transient response of 
the FLL to a step-change in input frequency. Owing to the time-delay term present in (28), the 
inverse Laplace calculation must be done numerically. The example that follows illustrates how 
effective the quadri-correlator can be for reducing the initial frequency error in a FLL / PLL 
system like that shown in Figure 16. The parameter details are provided in Table 2. The closed-
loop gain functions for this example are shown in Figure 18 and the well-behaved transient 
response to a step-change in frequency is shown in Figure 19. 
 A number of design parameters need to be considered when designing a frequency-
locked loop including the magnitude of the initial frequency error possible, the switching-time 
required, and the manner in which the FLL is to be transitioned into a phase-locked loop 
configuration once the frequency error has been adequately reduced. Digital variants of the 
quadri-correlated based upon (26) can also be implemented for digital signal processing 
applications as well. Equations (31) and (32) are convenient approximations that can be used to 
begin the design process while more exact calculations using (28) or Spice-based simulations 
can be used to complete the detailed design. 
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Table 2 Frequency-Locked Loop Analysis Example 

FLL Parameter Value Comments 

FD 125 ns Delay through discriminator 

KFM 10–7 V / Hz 0.1V per MHz 

Kv 2 20 MHz/V VCO tuning sensitivity 

1 1 µs  

2 125 ns Equal to FD 

LPF 2 250 kHz  

F 10 MHz Applied step-frequency for transient response 

 
 

 
Figure 18 Closed-loop gain characteristics12 for the frequency-locked loop detailed in Table 2 

 

                                                
12

  Computed using u17368_technique4.m. 
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Figure 19 Frequency-locked loop step-frequency transient response13 corresponding to Table 2 
and Figure 18. Input step-frequency change applied was 10 MHz. 

 

Summary 
 
Four unconventional phase-locked loop methods have been presented that should strengthen 
and widen the tools available for all sorts of PLL designs. Additional information, including the 
MATLAB scripts used to create this article can be found at http://www.am1.us by following the 
hyperlink found on the home page. 
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