Examination of Envelope Detector Algorithm
 J.A. Crawford 29 July 1993

$$
\begin{aligned}
& \text { First, examine situation in base-10 number system... } \\
& \text { ii }:=0 . .999 \\
& P_{i i}:=\frac{i i+1}{1000} \quad \text { Power Input } \\
& \text { Use table look up to assist in initial estimate for sqrt. } \\
& y 0_{i i}:=\sqrt{\text { floor }\left(\frac{P_{i i}}{0.03125}+0.5\right) \cdot 0.03125+0.15 \cdot 1.2} \\
& y_{1 i}:=0.5 \cdot\left(y 0_{i i}+\frac{P_{i i}}{2}\right) \quad \text { First Iteration } \\
& y 2_{i i}:=0.5 \cdot\left(y 1_{i i}+\frac{P_{i i}}{y 1_{i i}}\right) \quad \text { Second Interation } \\
& y 3_{i i}:=0.5 \cdot\left(y 2_{i i}+\frac{P_{i i}}{y 2_{i i}}\right) \quad \text { Third Iteration }
\end{aligned}
$$

Turns out that in binary representation, do not need to go to a lookup table as badly. (Decimal form without lookup table was extremely poor.)
Don't want to add another iteration since each one requires a division operation, so a table lookup is better choice.
bnii $:=$ floor $\left(P_{i i} \cdot 2^{15}+0.5\right) \quad$ Convert to binary form
$\operatorname{ep}_{i i}:=\operatorname{ceil}\left(\frac{\log \left(b n_{i i}\right)}{\log (2)}\right) \quad$ Derive binary exponent
resii $:=\frac{\mathrm{bn}_{\text {ii }}}{2^{\mathrm{ep}_{\text {ii }}}} \quad$ Extract residue

Implement 2-step algorithm on residue portion only.
$y 1_{i i}:=0.5 \cdot\left(1+\right.$ res $\left._{i i}\right)$

$$
\mathrm{y} 2_{\mathrm{ii}}:=0.5 \cdot\left(\mathrm{y} 1_{\mathrm{ii}}+\frac{\mathrm{res} \mathrm{si}}{\mathrm{y} 1_{\mathrm{ii}}}\right)
$$

$\mathrm{yx}_{i i}:=\frac{\mathrm{y}^{2} \mathrm{ii} \cdot 2^{0.5 \cdot \mathrm{ep}_{\mathrm{ii}}}}{256} \cdot \sqrt{2}$

Square Root Algorithm Performance With 2 -Step Formula + Binary Representation

Percentage Error

