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1 Introduction 
 

Few topics in electrical engineering have demanded as much attention over the years as the 
phase-locked loop (PLL).  The PLL is arguably one of the most important build ing blocks necessary 
for modern d igital communications, whether in the RF radio portion of the hardware where it is used 
to synthesize pristine carrier signals, or in the baseband d igital signal processing where it is often 
used  for carrier- and  time-recovery processing.  The PLL topic is also intriguing because a thorough 
understanding of the concept embraces ingredients from many d isciplines including RF design, 
d igital design, continuous and d iscrete-time control systems, estimation theory and  communication 
theory. 

The PLL landscape is naturally d ivided  into (i) low signal-to-noise ratio (SNR) applications like 
Costas carrier-recovery and  time-recovery applications and  (ii) high SNR applications like frequency 
synthesis.  Each of these areas is further d ivided  between (a) analog/ RF continuous-time 
implementations versus (b) d igital discrete-time implementations. The d ifferent manifestations of the 
PLL concept require careful attention to different usage, analysis, design  and  implementation 
considerations. 

With so many good tutorials about PLLs available on the Internet and  elsewhere today, a 
theoretically unifying development will be presented  in this article with the intention of provid ing a 
deepened understanding for this extremely pervasive concept. 

 

2 Phase-Locked Loop Basics 
 
The best way to develop a sound understanding of the phase-locked loop is to review the 

fundamental theories upon which this concept is based .  One of the factors contributing to the 
longevity of the PLL is that relatively simple implementations can still lead  to nearly optimal 
solutions and  performance.  

 

2.1 Some PLL History 
 

“While recovering from an illness in 1665, Dutch astronomer and  physicist Christiaan Huygens 
noticed something very odd. Two of the large pendulum clocks in his room were beating in unison, 
and  would  return to this synchronized  pattern regard less of how they were started , stopped or 
otherwise d isturbed .  

An inventor who had  patented  the pendulum clock only eight years earlier, Huygens was 
understandably intrigued . He set out to investigate this phenomenon, and  the records of his 
experiments were preserved  in a letter to his father. Written in Latin, the letter provides what is 
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believed  to be the first recorded  example of the synchronized  oscillator, a physical phenomena that 
has become increasingly important to physicists and  engineers in modern times1.” It should  come as 
no surprise that modern researchers would later find that the behavior of such injection-locked 
oscillators can be closely modeled  based  upon PLL principles [6,7,8,9]. Anyone who has tried  to co-
locate RF oscillators running at d ifferent but nearly the same frequency has experienced  how 
incredibly sensitive this coupling phenomenon is! 

In 1840, Alexander Bain proposed  a fax machine that used  synchronized  pendulums to scan 
an image at the transmitting end  and send electrical impulses to a matching pendulum at the 
receiving end to reconstruct the image. The device, however, was never developed. 

“The phase-lock concept as we know it today was originally described  in a published  work by 
de Bellescize in 1932 [1] but d id  not fall into widespread  use until the era of television where it was 
used  to synchronize horizontal and  vertical video scans. One of the earliest patents showing the use of 
a phase-locked loop with a feedback d ivider for frequency synthesis appeared  in 1970 [2]. The phase-
locked loop concept is now used  almost universally in many products ranging from citizens band 
radio to deep-space coherent receivers2.”  

 

2.2 PLL Terminology 
 

A PLL consists of three basic components that appear in one form or another [4,5]: 

1. Phase error metric or detector 
2. Frequency-controllable oscillator 
3. Loop filter 

 
Loop “type” refers to the number of ideal poles (or integrators) within the linear system. A 

voltage-controlled  oscillator (VCO) is an ideal integrator of phase for example.  
Loop “order” refers to the polynomial order of the describing characteristic equation for the linear 

system. Loop-order must always be greater than or equal to the loop-type. 
Although the term “settling time” is frequently used  in the literature, a specified  settling time is 

meaningless unless the definition for settling is also provided . A properly rigorous statement would 
be for example, “The settling time for the PLL is 1.5 msec to within ±5 degrees of steady-state phase.”  

Much more extensive discussion of PLL-related terminology is available in [3,4,12]. 
 

2.3 Continuous-Time Versus Discrete-Time Systems 
 

PLL work was originally based  upon continuous-time dynamics and  engineers utilized the Laplace 
transform to mathematically describe linear PLL behavior. The world  has however gone d igital and 
with it, time has been d iscretized  and  dynamic quantities sampled. The connection between 
continuous-time and discrete-time systems can be easily bridged by making use of the Poisson Sum 
formula [3]. This formula relates the continuous-time function h(t) and its Fourier transform H(f) to 
the d iscretized  world  as 

                                                      
1  http :/ / www.globaltechnoscan.com/ 20thSep-26thSep/ out_of_time.htm 
2  [3] Chapter 1 
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where Ts is the time interval between samples. The left-hand side of (1) is by definition the z-
transform of h(t) weighted  by the quantity Ts.  

It is insightful to look at this statement for the classic type-2 3rd-order PLL shown in Figure 1 
for which the open-loop gain is given by 
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Figure 1 Simple Charge-Pump PLL (Type-2, 3rd Order) 
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where Kv is the VCO tuning sensitivity (rad / sec/ V), Kd is the phase detector gain (A/ rad .), N is the 
feedback d ivider ratio, and  τp and  τ2 are the time constants associated  with the lead-lag loop filter. In 
this form, the loop natural frequency and loop damping factor are given respectively by (3) and  (4). 

The d iscrete-equivalent z-transform for GOL(s) can be computed  as 
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As developed at length in chapters 4 & 5 of [3], sampling control system factors adversely affect PLL 
stability, settling time and phase noise performance as the closed-loop bandwidth is permitted to 
exceed  approximately 1/ 10 of the phase comparison frequency. Sampling effects on the open-loop 
and closed-loop transfer functions can be assessed  by either going to the trouble to first compute the 
z-transform of the open-loop gain function as in (7), or the Poisson Sum formula can be used to 
compute the closed-loop transfer function much more conveniently as 
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Only a very few of the aliased  GOL(s) gain terms need  to be retained  in the denominator in order to 
very accurately capture the sampling effects of interest. 
 The open-loop gain functions with and  without the inclusion of sampling effects are shown in 
Figure 2 assuming a sampling rate of 100 kHz, a natural frequency of 5 kHz and damping factor of 
0.90. The closed-loop response for this same system is shown in Figure 3 using (8). 
 
Figure 2 Closed-Loop Gain Showing 
Continuous and Sampled Gain Forms3 
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Figure 3 Closed-Loop Behavior for this case 
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 If the PLL natural frequency is increased  to 12.5kHz (representing 1/ 8 of the sampling rate), 
stability problems become readily apparent is the excessive amount of gain-peaking that appears as 
shown in Figure 5 and  the almost nonexistent gain-margin as shown in Figure 4. 
 
Designers should be certain to address sampling effects as the percentage loop bandw idth (compared 
to the phase comparison frequency) is increased. Gain-peaking frequent ly  degrades performance more 
than expected even though the system’s stabilit y  margins are acceptable. 
 
 
 

                                                      
3  Phase comparison frequency of 100 kHz assumed, natural frequency of 5 kHz, damping factor of 0.90 
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Figure 4 Open-Loop Gain for Increased PLL 
Bandwidth Case4 
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Figure 5 Closed-Loop Behavior for Increased PLL 
Bandwidth Case 
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2.4 PLL Theory Perspectives 
 

Phase-locked loop theory of operation can be looked at from several d ifferent perspectives.  As 
we have just seen in the previous section, time-continuous and sampled  system analysis of PLLs used 
for frequency synthesis produce almost identical results unless the closed-loop bandwidth becomes 
an appreciable fraction of the phase comparison frequency being used .  In a similar fashion, d ifferent 
analysis must be used  to study PLL operation under low signal-to-noise ratio (SNR) cases (e.g., 
customarily found in receiver applications) as compared  to high SNR cases (e.g., like those 
encountered  in frequency synthesizer usage). Several d ifferent perspectives that all help expand the 
phase-locked loop concept are d iscussed  in the material that follows. 

 

2.5 Control Theory Perspective (High SNR) 
 

The control theory perspective of PLLs is normally the setting with which electrical engineers are 
dominantly familiar.  Control theory concepts were used  earlier in Section 2.3. Continuing in this 
vein, the classical type-2 second-order PLL that will be used  for these discussions is shown in Figure 
6.  In our first view of this PLL in the strictly continuous-time domain, the phase detector is assumed 
to be linear (i.e., no sample-and-hold  present). 

Several first-order approximations are helpful to keep in mind when dealing with this classical 
PLL system based  upon simple Bode d iagramming techniques. The open-loop gain d iagram of 
interest is Figure 7  whereas Figure 8 pertains to the closed-loop characteristics. In both figures, the 
unity-gain radian frequency ωu is given by (11). 

                                                      
4  Phase comparison frequency of 100 kHz assumed, natural frequency of 12.5kHz, damping factor of 0.90 
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Figure 6 Classical Type-2 Second-Order PLL with Sample-and-
Hold Phase Detector 
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Figure 7 Open-Loop Gain Approximations for Classic Type-2 PLL 
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Figure 8 Closed-Loop Approximations for Classic Type-2 PLL 
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 As noted  elsewhere, the behavior of real-world  sampled  systems matches the continuous-time 
behavior very closely if the system bandwidths are small relative to the sampling rate. Therefore, it is 
very convenient to use the results from continuous-time theory to approximate useful quantities for 
both types of systems. A number of these helpful results for the continuous-time case are provided  in 
Table 1. 
 
Table 1 Helpful Formula for Classic Type-2 PLL Given by (12)5  (]<1) 

Description Formula 
Closed-Loop Unity-Gain  

Frequency 0

2
2

n
Closed Loop dBF

ω
π− =  Hz 

Closed-Loop Gain -3 dB 
Frequency 2 4 2

3

1
1 2 2

2 2
n

dBClosedF
ω ζ ζ ζ
π− = + + + +  Hz 

Phase Margin 1 2 4
arg tan 2 2 4 1M inθ ζ ζ ζ−  = + +  

 

Closed-Loop Maximum 
Gain-Peaking Frequency 

21
1 8 1

2 2
n

Gain PeakF
ω ζ

π ζ− = + − Hz 

                                                      
5  NOTE: No sample-and-hold  included  for these results; i.e., strictly continuous-time PLL 
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Description Formula 
% Transient Overshoot in 
Frequency for Frequency 

Step 

2
1

2

12
tan

1
pk

n

T
ζ

ζω ζ
−

 −
 =  −  

 

( ) ( ) ( )2 2
% 2

exp cos 1 sin 1 100%
1

n pk n pk n pkOS T T T
ζζω ζ ω ζ ω

ζ

 
= − − − − × 

 −  
 

Time of Peak Phase-Error 
Due to Step-Frequency 

Change 

2
1

2

11
tan

1
fstep

n

T
ζ

ζω ζ
−

 −
 =  −  

 

Time of Peak Phase-Error 
Due to Step-Phase Change 

2
1

22

2 11
tan

2 11
step

n

Tθ
ζ ζ

ζω ζ
−

 −
 =  −−  

 

Transient Response 

( )F tθ∆ →  

 

( ) ( ) ( )2

2

exp2
sin 1

1
n

pd n
n

tF
t t

ζωπθ ω ζ
ω ζ

−∆= −
−

 

Transient Response 

( )F f t∆ →  

 
( ) ( ) ( ) ( )2 2

2
exp cos 1 sin 1

1
pd n n nf t F t t t

ζζω ω ζ ω ζ
ζ

 
= ∆ − − − − 

−  
 

Transient Response 

( )tθ θ∆ →  

 
( ) ( ) ( ) ( )2 2

2
exp cos 1 sin 1

1
pd n n nt t t t

ζθ θ ζω ω ζ ω ζ
ζ

 
= ∆ − − − − 

 −  
 

Transient Response 

( )f tθ∆ →  ( ) ( ) ( ) ( )2
2 2

2

2 1
exp sin 1 2 cos 1

2 1
n

pd n n nf t t t t
θω ζζω ω ζ ζ ω ζ
π ζ

 ∆ −= − − − − 
−  

 

 
In moving beyond the strictly continuous-time domain so that we can include d igital dividers and 

phase detectors, we now include the zero-order sample-and-hold  in the open-loop gain formula6 as 
given by (12). In this formulation, Kd now has d imensions of V/ rad . And Ts is the time between 
sampling instants.  The closed-loop natural frequency and damping factor are still given by (9) and 
(10) respectively. 
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In the case where the continuous-time open-loop gain is given by (12), full sampling effects 

can be included by computing the equivalent z-transform for this open-loop gain function which is 
 

                                                      
6  Correspond s to Case 4 in [3] 
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The system gain-margin GM based  upon (13) can be shown to be  
 
(14) ( )20M n sLog TG ζω= −  

 
but the gain margin is only defined  provided that ωnTs < 4ζ. This same constraint applies for the 
system phase margin which is given in [3]. Since the z-domain (13) includes sampling effects whereas 
the Laplace s-domain (12) does not, the gain-margin predicted  using the Laplace transform GOL(s) will 
always be more optimistic than actual as shown in Figure 9. 
 
Figure 9 Gain Margin for Classic Type-2 PLL with Sample-and-Hold 0.707ζ =  
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2.6 Phase-Locked Loops for Low SNR Applications 
 

Low SNR applications are frequently observed  at the receiving end of the system. The low SNR 
case can be cast in its most simple form as a simple sinusoidal signal immersed  in additive white 
Gaussian noise (AWGN) and mathematically represented  as 

 

(15) ( ) ( ) ( )r t s t n t= +  

 
where s(t)= A cRV�� ot + θ ) and  the frequency and phase are considered  constant.  In the phase-lock 
condition, we can IXUWKHU�DVVXPH�WKDW�WKH�IUHTXHQF\� o is known whereas the system is attempting to 
track the phase θ which is assumed to be quasi-static relative to the bandwidth of the PLL tracking 
system. It can be shown that the probability density function for the θ estimate can be written as 
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2 2
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, 1 cos exp cos 1 cos
2

p erf
γ

θ γ γ π θ γ θ γ θ
π
−

  = + +     

 
where γ is the receive SNR.  The cumulative pdf using (16) can be numerically computed  to create the 
trad itional “ S-curve”  for the ideal phase error metric.  Example probability density functions and  their 
associated  S-curves are shown in Figure 10 and Figure 11. 
 Fokker-Planck techniques can be used to solve the ensuing closed-loop tracking performance 
question for type-1 PLLs as provided  in [10,11,12].  The classic result that follows is the well-known 
Tikhonov probability density function for the closed-loop phase error given as 
 

(17) ( ) ( )
( )

exp cos

2 o

P
I

ρ φ
φ

π ρ
  =  

 
where ρ is the SNR within the closed-loop bandwidth and  Io() is the modified  Bessel function of order 
zero.  A more insightful exploration into the tracking performance of the type-1 PLL can be made by 
using the S-curve results that were just presented  along with a first-order Markov model for the 
system. 
 In the first-order Markov model for a type-1 PLL [13,14], the phase error range (-π,+π] is 
quantized  across N states.  Particularly nice closed-form results occur [14] if the state transitions are 
limited  to strictly nearest-neighbor transitions as shown in Figure 12.  Since the use of N states d ivides 
the total phase range of 2π into N equally-spaced  phase intervals, the closed-loop bandwidth is 
inversely proportional to N.  The state-transition probabilities denoted  by the p i and  q i are directly 
obtained  from the S-curve at the SNR of interest. 
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Figure 10 Phase Error PDF 
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Figure 11 Cumulative Phase Error PDFs (S-Curves) 

4 3 2 1 0 1 2 3 4
0.2

0

0.2

0.4

0.6

0.8

SNR= -2 dB
SNR= +2 dB

Phase Error Metric S-Curves

Phase, rad.
C

um
ul

at
iv

e 
Pr

ob
ab

ili
ty

 

 The Markov steady-state probability equations can be formulated  as 
 
(18) 1 1 1 2 2S q S q S= +  

(19) 1 1N N N N NS p S p S− −= +  

(20) 1 1 1 1k k k k kS p S q S− − + += +  
 
in which the Sk denote the steady-state occupancy probabilities for each state with k=1…N.  

This set of equations can be solved  as 
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Figure 12 First-Order Markov Chain Model for Type-1 PLL 
 

1 2 3 N-1 N
q

1

q
2 q

3
q

4
q

N-1
q

N

p
1

p
2

p
3

p
N-2

p
N-1

p
N

 
The mean tracking point and  tracking error variance can be d irectly computed  from the steady-state 
probabilities as 

(23) 
1

N

i
i

iSµ
=

= ∑  

(24) ( )22

1

N

i
i

i Sσ µ
=

= −∑  

 
The steady-state probabilities results are shown for two SNR cases with N=64 in Figure 13.  The 
tracking error standard  deviation for the SNR= -2dB case is 14.7 degrees rms whereas it is 9.9 degrees 
rms for the SNR= +2dB case.  

Another important quantity related  to low SNR PLL operation is the quantity known as 
“ mean-time to cycle-slip” .  This can be d irectly computed  from the transition probabilities in a similar 
fashion as described  in [13,14]. 
 
Discrete modeling on the computer can be used to gain valuable insights w ithout  revert ing to the 
complicat ions of Fokker-Planck and Chapman-Kolmogorov  equat ions for low -SNR performance 
invest igat ions.  Use of probabilit y -mass methods can dramat ically  shorten analysis and simulat ion 
t imes. 
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Figure 13 Steady-State Probabilities 
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Figure 14 Tracking Error Standard Deviation (in 
degrees rms) and Effective Loop SNR7 (dB) 
Versus Input SNR (dB) 
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2.6.1 Minimum Variance Estimator 
 

The design of a near-optimal PLL can be investigated by considering the phase-tracking 
problem as a minimum-variance estimation problem.   Assume that we have a received  signal that is 
represented  by 

 

(25) ( ) ( ) ( )r t s t n t= +  

 
in which n(t) represents complex Gaussian channel noise and  s(t) represents a complex sinusoid  as 

(26) ( ) [ ]exp os t A j t jω θ= − −   

 
If the received  signal is d iscretized  in time (tk = kTs ), noise samples at tk are assumed to be 

uncorrelated , and  the estimates for the sinusoid’s parameters are given by ˆ ˆˆ,A andω θ , the variance 
for the joint estimate is given by 

(27) ( ) ( ) 2
2 ˆ ˆˆexpk k

k

r t A j t jσ ω θ= − − −∑  

This can be expanded as 

                                                      

7  Calculated  using the approximation ( ) 122 trackρ σ
−

= where the tracking error variance is in rad ians2. 
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(28) ( ) ( ) ( ){ }22 2̂ ˆ ˆˆ2 Re expk k k
k

A r t A r t j t jσ ω θ = + − +  ∑  

 
Assuming that the PLL has already achieved  frequency-lock, we will assume that ˆ oω ω=  and  there is 
no frequency error present. Minimizing the estimator variance with respect to each individual 
parameter separately results in the following partial derivatives: 

(29) ( ) ( ){ }
2

ˆ ˆ2 2 Re expˆ o
k

KA r kT j kT j
A

σ ω θ∂ = − +
∂ ∑  

(30) ( )
2

ˆ ˆ2 Im expˆ k o s
k

A r j kT j
σ ω θ
θ

∂  = + ∂ ∑  

 

where Â  is always a real quantity. The estimators that minimize the tracking error variance are then 
given as 
 

(31) ( )̂Im exp 0k k
k

r z jθ  = ∑  

(32) ( )1ˆ ˆRe expk k
k

A r z j
K

θ =  ∑  

 
in which K is the total number of signal samples involved  and zk= exp( jωoTs ).  Although the 

estimator for Â  involves first knowing θ̂ , no prerequisite knowledge of Â is explicitly required  in 
(31) in order to find  the best phase estimate.  The implementation structure suggested  by (31) for the 
minimum-variance phase estimator is shown in Figure 15 [19]. 
 
Figure 15 Minimum-Variance Estimator Cast as a PLL 
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2.6.2 Maximum-Likelihood Estimator 
 

Another estimator form can be derived  based  upon maximizing probability or what is called 
“ likelihood”  in estimation theory.  In the case of a real sinusoid  of unknown phase in real additive 
Gaussian noise similar to the situation we just examined, we seek to pick an estimate for θ that 
maximizes the probability 

(33) ( ) ( ) [ ] [ ]
1

12 2
1

2 exp
2

K
T

P r R r s R r sπ − − − = − − − 
 

G G GG G  

where rG and sG represent the K-dimensional measurement and  signal estimate, and  R is the KxK 

correlation matrix.  In this real case being considered , sk = A cos(ωokTs+θ).  We can equivalently seek 
to maximize the log-likelihood function of θ which is given by 

 

(34) ( ) ( ) ( ) ( ) ( )11 1
log 2 log

2 2 2
TK

L R r s R r sθ π − = − − − − − G GG G  

Assuming that the noise samples have equal variances and  are uncorrelated , R= σn2I where I is the 
KxK identity matrix. In order to maximize (34) with respect to θ, a necessary condition is that the 
derivative of (34) with respect to  θ be zero, or equivalently 
 

(35) 
( )

( ) ( )

2
cos 0

2 cos sin 0

k o k
k

k o k o k
k

L
r A t

r A t A t

ω θ
θ θ

ω θ ω θ

∂ ∂  = − + = ∂ ∂
 = − + + = 

∑
∑

 

Simplifying this result further and  discard ing the double-frequency terms that results, the maximum-
likelihood estimate for θ is that value that satisfies the constraint 
 

(36) ( )kˆsin 0k o k
k

r tω θ+ =∑  

 
The top-line indicates that double-frequency terms are to be filtered  out and  d iscarded . This result is 
equivalent to the minimum-variance estimator derived  earlier in (31).  
 
Under the assumed linear Gaussian assumpt ions, the minimum-variance (MV) and maximum-
likelihood (ML) est imators take the same form w hen implemented w ith a PLL. Both algorithms seek 
to reduce any  quadrature error to zero. 
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3 Summary 
 
Diverse design perspectives can be utilized  to improve and extend our basic understanding of the 

PLL concept. Mathcad  worksheets for most of the results presented  in this paper can be found at. 
http:/ / www.siliconrfsystems.com/ design_notes.htm . 

In the second part of this article, we will close out the theoretical discussions by looking at (i) the 
maximum a posteriori (MAP) estimator PLL form, (ii) the Cramer-Rao bound which provides helpful 
insights into achievable theoretical performance, and  finally (iii) the PLL derived  based  upon Kalman 
filtering concepts. The balance of the article will look at several real-world  applications using the PLL 
concept.    
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